
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dan Bode and Nan Liu

Puppet Types and Providers

www.it-ebooks.info

http://www.it-ebooks.info/

ISBN: 978-1-449-33932-6

[LSI]

Puppet Types and Providers
by Dan Bode and Nan Liu

Copyright © 2013 Dan Bode, Nan Liu. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Courtney Nash
Production Editor: Kristen Borg

Proofreader: O’Reilly Production Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Kara Ebrahim

December 2012: First Edition

Revision History for the First Edition:

2012-12-11 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449339326 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Puppet Types and Providers, the image of a hispid hare, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449339326
http://www.it-ebooks.info/

Table of Contents

Preface. v

1. Puppet Resources. 1
Resource Characteristics 3

Declarative 3
Idempotent 4
Unique 6

Resource Model 6
Types 7
Providers 8

The puppet resource Command 9
Retrieving Resources 9
Modifying Resources 9
Discover All Resources 11

Noop Mode 12
Catalogs 12

Dependencies 13
Catalog as a Graph 14

Conclusion 17

2. Types. 19
Defining Puppet Types 20
Attributes 22

Namevars 22
Properties 24
The ensure Property 25
Parameters 26

Default Values 27
Input Validation 28

Validate 28

iii

www.it-ebooks.info

http://www.it-ebooks.info/

newvalues 30
munge 30
AutoRequire 31
Arrays 32
Inline Documentation 32
Conclusion 34

3. Providers. 35
Creating a Provider 36
Suitability 38

confine 38
defaultfor 40
commands 41

Properties and Providers 43
ensure Property 43
Managing Properties 47

Discovering and Prefetching Resources 49
Discovery with self.instances 49
The Property Hash 51
Query All Resources 52
Prefetching Managed Resources 53
Generated Property Methods 55
Managing a Resource 56
Flush 57
Purging Resources 59
Putting It All Together 60

Conclusion 60

4. Advanced Types and Providers. 61
Refresh 62
Features 63
Code Reuse 64

Parent Providers 64
Shared Libraries 66

Customizing Event Output 68
Now What? 69

A. Installing Puppet. 71

B. Modules. 75

C. Troubleshooting and Debugging. 77

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Puppet is a configuration management tool that has enjoyed phenomenal growth over
the last few years. Propelled by increasing demands on sysadmins, and the continuous
growth of infrastructure (both physical and virtual), Puppet has been one of the key
technology components of the DevOps movement. This cultural shift focuses on break‐
ing down the silo between development and operations. Tools like Puppet are important
to this movement because it allows application deployment knowledge to be expressed
as code to build automated release platforms.

Puppet is also helping lead the path towards software-defined infrastructure (or infra‐
structure as code). As more systems in data centers support better APIs, the importance
of centralized configuration management increases. Puppet is leading this trend by lev‐
eraging its model to manage more than the roles of individual systems. It also supports
network devices, load balancers, and managing virtual machine instances.

All system configurations in Puppet are expressed as resources that model complex
configurations using Puppet’s Domain Specific Language (DSL). Puppet supports a large
set of native resources for modeling the desired state of a system. Resources already exist
for managing most common elements of a system (users, groups, packages, services).
These native resources are implemented in Ruby using Puppet’s type and provider APIs.

The power of Puppet lies in its ability to manage the state of complex systems using this
simple resource model. This book discusses the highly extensible resource model and
the framework around it. It explores the extension points and how to leverage them to
expand Puppet’s functionality.

Puppet has a vibrant user community, and has seen an explosion of content in the last
few years. Puppet’s online documentation and existing books serve as great references

v

www.it-ebooks.info

http://www.it-ebooks.info/

for language constructs and architecture. We have always considered the type and pro‐
vider APIs as one of the most important and least documented aspects of Puppet. This
book is aimed at lowering the barrier for writing types and providers by providing
sufficient instructions and examples.

Most of what we learned about types and providers has been through trial and error
following the evolution of Puppet’s source code changes. The experience of writing a
large number of types and providers has really opened us to the potential of Puppet.
Learning how to do it by reading source code, however, has been a long and painful
process fraught with many mistakes and poor implementations.

The goal of this book is to explain all of the concepts of types and providers in detail
along with many of the lessons we have learned. We hope this helps Puppet users better
understand why they should be writing types and providers, and also arm them with
enough information on how to properly implement them.

The book walks through examples to demonstrate concepts and also shows the user
how to delve into Puppet’s source code to get a better understanding of how types and
providers are implemented internally.

It’s also worth noting that when we explore the APIs for developing custom types and
providers (in Chapter 2 and Chapter 3, respectively), we occasionally reimplement
functionality that already exists in the Puppet source code. The examples in this book
are not intended to be replacement code per se—they are intentionally simplified and
intended to serve as an reference on how to implement the important features from the
type and provider APIs.

Who Is This Book For?
This book is targeted at users who have a fundamental understanding of Linux/Unix
systems and familiarity with basic Puppet concepts. This book is not intended to provide
details of the basic language constructs of Puppet, simply enough details to discuss
implementing custom Puppet resources via Ruby. It assumes that readers already have
experience writing Puppet manifests and does not cover these concepts. For more in‐
formation on topics specific to the Puppet DSL (classes, defines, nodes, etc.), we rec‐
ommend checking out the official documentation at the Puppet Labs website.

This book was also written to serve as a reference for developers who are writing and
maintaining custom resource types. It explains the concepts required for extending
Puppet by implementing custom resources as types and providers, and contains many
code examples written in Ruby. It assumes that readers have some familiarity with cod‐
ing, but it also explains most Ruby concepts as they are introduced.

vi | Preface

www.it-ebooks.info

http://docs.puppetlabs.com
http://www.it-ebooks.info/

What Does This Book Cover?
This book focuses on how Puppet is extended by creating custom resource types using
the type and provider APIs. We provide an overview on Puppet resources and termi‐
nology then dive into writing types and providers in Ruby. This book is broken down
into the following chapters:

• Chapter 1, Puppet Resources : This chapter provides an in-depth explanation of
the characteristics of resources. In Puppet, resources are the basic building blocks
used to model configuration state. A basic understanding of resources is required
to understand what the rest of this book will be teaching about the type and provider
APIs.

• Chapter 2, Types: This chapter covers Puppet’s type API, focusing on how it is used
to create new resource types that Puppet can manage, along with the list of attributes
used to describe them.

• Chapter 3, Providers: This chapter covers the provider API, explaining how pro‐
viders interact with the underlying system in order to achieve the desired state of a
declared resource.

• Chapter 4, Advanced Types and Providers: This chapter expands the discussion
of the type and provider APIs with some more advanced concepts.

Resources
• Puppet online documentation
• Twitter, @bodepd
• Twitter, @sesshin

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Preface | vii

www.it-ebooks.info

http://docs.puppetlabs.com
http://twitter.com/bodepd
http://twitter.com/sesshin
http://www.it-ebooks.info/

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Puppet Types and Providers by Dan Bode
and Nan Liu (O’Reilly). Copyright 2013 Dan Bode and Nan Liu, 978-1-449-33932-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database

viii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.it-ebooks.info/

from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/puppet-types-providers.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgement
Thanks to Luke Kanies for writing Puppet: without all of your hard work, this book
would obviously never have been written. Thanks to Teyo Tryee for providing us with
guidance, but mostly for trusting and believing in us. Special thanks to both Michelle
Roberts, Chris Spencer, and Joe Topjian for their support in writing this book. Michelle
and Chris, thanks for making our sentences less offensive to English professors every‐
where. Joe, you are the audience that we had in mind for this book; thanks for your
comments on which parts of the book you felt were less clear. Thanks as well to Ken
Barber and James Turnbull for your review and comments.

Preface | ix

www.it-ebooks.info

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/puppet-types-providers
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Puppet Resources

Resources are the fundamental building blocks used to model system state in Puppet.
They describe the desired end state of unique elements managed by Puppet on the
system. Everything that Puppet manages is expressed as a resource. In fact, every in‐
teraction between Puppet and the underlying system is expressed as a resource, too.
This chapter covers the fundamental concepts behind resources, and lays out the struc‐
ture of Puppet’s Resource Model for types and providers, setting you up to dive into both
in the later chapters.

Installing Puppet
Given that this book is aimed at existing Puppet users, we assume you
already have it installed. However, if you don’t, check out Appendix A,
and then jump back here to get started.

Resources describe the desired end state of system components by specifying a type, a
title, and a list of attributes.
Type

The type of a resource determines the system component Puppet manages. Some
common types are: user, group, file, service and package. A resource declaration
always contains the type of resource being managed.

Title
The title of a resource identifies an instance of that resource type. The combination
of type and title refers to a single unique element managed by puppet, such as a user
name joe or a file with path /root/.bashrc.

1

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes
Each resource supports a list of key value pairs called attributes. These attributes
provide a detailed description that Puppet uses to manage the resource. For exam‐
ple, the file /root/.bashrc should be present. The user dan should be present and
have its login shell set to /bin/bash.

Puppet provides a Domain Specific Language (DSL) that expresses the intended state
of a system’s configuration through collections of resources. Resources are declared in
Puppet’s DSL with the following syntax:

<type> { <title> :
 attribute1 => value1,
 attribute2 => value2,
}

The following specific example is applied by Puppet to ensure that a package named
apache2 is installed:

package { 'apache2':
 ensure => present,
}

You can combine several resources together to create a manifest (a source file for Puppet
code) using the Puppet DSL. Manifests often contain classes that are used to create
collections of resources which provide a common application or service.

The following manifest ensures that the latest version of the apache2 package is installed,
and checks that the service is running on the web servers managed by Puppet:

class webserver {

 package { 'apache2':
 ensure => latest,
 }

 service { 'apache2':
 ensure => running,
 subscribe => Package['apache2'],
 }

}

This description can be applied to any node to ensure it is configured as a web server.
The following example demonstrates how the the node web1 is designated as a web
server:

node 'web1' {
 class { 'webserver': }
}

Figure 1-1 shows how the webserver class is applied to several machines.

2 | Chapter 1: Puppet Resources

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1. Configuring multiple nodes as webservers

Resource Characteristics
Understanding how resources behave is extremely important for the following chapters
on types and providers. A clear understanding of Puppet resources allows you to effec‐
tively develop custom resources using Puppet’s type and provider APIs that are consis‐
tent with Puppet’s model. Both the type and provider APIs are used to implement
resources that will be declared in Puppet’s DSL. This section will cover a few fundamental
characteristics of resources, including:

• Declarative
• Idempotent
• Unique

Declarative
Resources describe what Puppet should manage without having to specify any infor‐
mation related to the procedure or process that should be used. This is the defining
characteristic of being declarative. This is in contrast to scripting languages where the
author must specify a sequence of actions to configure the system. To manage a system
with Puppet you only have to describe the desired state of each resource.

The example resource below declares an ftp service account:

user { 'ftp':
 ensure => present,
 shell => '/sbin/nologin',
}

Resource Characteristics | 3

www.it-ebooks.info

http://www.it-ebooks.info/

When applied to a system, Puppet ensures that this user:

• Exists on the system
• Has its shell set to /sbin/nologin (meaning that the system will not allow remote

logins for that user)

This resource can be declared without having to specify (or even know) the exact pro‐
cedure required to ensure that the end result is a system user with those characteristics.
The details of how this user is managed are handled by Puppet and abstracted away
from the person writing the manifest.

Idempotent
Idempotent is a math term that applies to operations always resulting in the same out‐
come regardless of how many times they are applied. In the world of Puppet, this simply
means that a resource can be applied to a system multiple times and the end result will
always be the same.

Consider the resource from our previous example:

user { 'ftp':
 ensure => present,
 shell => '/sbin/nologin',
}

Since resources are declarative, the end state of the ftp account should always be the
same regardless of the starting state of the system. If the system is already in the desired
state, then Puppet will not perform any action. This means that resources can be applied
any number of times and the result will always be the same.

Consider the states that could exist on a system before we apply our example resource
to it:

• The user does not exist
• The user exists and has its shell set to /sbin/nologin
• The user exists but its shell is not set to /sbin/nologin

As shown in Figure 1-2, the end state of our system is always the same because resources
in Puppet are declarative and idempotent. Users can declare the resulting state that will
exist after Puppet has been applied, without having to care about or even know the
current state of the system.

4 | Chapter 1: Puppet Resources

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-2. Puppet resource state

With procedural scripts, the author must specify how to modify a resource into the
desired end state for each of the starting cases specified above. This is why procedural
scripts are rarely idempotent—there is too much logic required to handle every possible
starting case correctly.

To achieve the same behavior as Puppet, users need to write complex logic to ensure
that each command is only executed conditionally when changes need to be made to
the underlying system. The following shell script reimplements our example ftp user
resource:

#!/bin/bash
set -e
set -u
if getent passwd ftp; then
 USER_LOGIN=`getent passwd ftp | cut -d: -f7`
 if ['/sbin/nologin' != "${USER_LOGIN}"]; then
 usermod -s /sbin/nologin ftp
 fi
else
 useradd -s /sbin/nologin ftp
fi

The shell script detects if the user already exists, as well as the user’s current shell, in
order to decide if any changes need to be made. Puppet’s user resource supports many
more properties than just shell. Just imagine how complex the bash equivalent to the
following resource would be!

user { 'ftp':
 ensure => present,

Resource Characteristics | 5

www.it-ebooks.info

http://www.it-ebooks.info/

 shell => '/sbin/nologin',
 home => '/var/lib/ftp',
 uid => '601',
 gid => 'system',
}

Unique
Resources in Puppet must be unique. Because each resource declares a desired end state,
duplicates of the same resource (identified by a unique combination of type and title)
could result in a conflicting end state.

The following resources declare two conflicting ftp users:

user { 'ftp':
 ensure => present,
 uid => 501,
}

user { 'ftp':
 ensure => present,
 uid => 502,
}

This manifest specifies that the ftp user’s uid should be both 501 and 502.

Fortunately, Puppet enforces unique combinations of type and title across all resources.
If Puppet detects duplicate resources when processing a manifest, it prevents conflicts
by failing with the error below:

Duplicate declaration: User[ftp] is already declared in file user.pp at line 4;
cannot redeclare at user.pp:9 on node my_host

Puppet’s ability to detect duplicate resource declarations is extremely handy when com‐
bining collections of resources from different modules. Any conflicting state between
collections of resources results in a failure and a clear error message. This prevents users
from deploying applications with conflicting requirements.

Resource Model
Puppet’s Resource Model consists of two layers called types and providers. Types specify
the interfaces used to describe resources in Puppet’s DSL and providers encapsulate the
procedure used to manage those resources on a specific platform. A resource uses the
interface defined by its type to declare a list of attributes that describe its state. The
provider uses these declared attributes to manage the state of a resource.

6 | Chapter 1: Puppet Resources

www.it-ebooks.info

http://www.it-ebooks.info/

As an example, a user account may contains settings like username, group, and home
directory. These attributes are defined as a part of its type. These users are managed
differently on Windows, Linux, or ldap. The methods to create, destroy, and modify
accounts are implemented as a separate provider for each of these backends.

We’ll dive into types and providers in much more detail in the following chapters—in
the rest of this chapter, we’ll set the stage with some basic concepts for both.

Types
The Type API expresses the interface used to declaratively describe a resource. In Pup‐
pet, there are two kinds of types: defined types written in Puppet’s DSL, and native types
that are written in Ruby. Puppet ships with a large collection of native resources imple‐
mented in Ruby. This includes basic things like: users, groups, packages, services, and
files (and some not-so-basic things like zfs/zones).

Defined types create an interface around a composition of resources. Consider the fol‐
lowing defined type:

define custom_user (
 $ensure = present,
 $home
) {
 # …. omitting resources composing custom_user.
}

As we saw earlier, a resource (in this case, custom_user) is defined by providing a re‐
source title and the attributes $ensure and $home. This defined type can be consumed
without worrying about the resources that provide the implementation:

custom_user { 'ftp':
 ensure => present,
 home => '/var/lib/ftp',
}

Ruby Types provide the ability to specify resource interfaces just like the define keyword
in the Puppet DSL. They are implemented using the type API, which offers a much
richer descriptive language and provides additional features such as validation and re‐
source dependencies (we’ll look at this in much greater depth in the next chapter).

Ruby types, unlike defined types, rely on providers for the procedures used to manage
the underlying system.

Resource Model | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Providers
Providers implement the procedure used to manage resources. A resource is simply
declared as a list of attributes because all of the instructions for managing that resource
have been encapsulated in the provider. Additionally, multiple providers can be imple‐
mented for a single type, allowing the same resource to be applied on different operating
systems.

Puppet includes one or more providers for each of its native types. For example, Puppet’s
User type includes eight different providers that implement support across a variety of
Unix, Linux, and even Windows platforms.

The Package type (as shown below) contains the most providers:

$ ls ~/src/puppet/lib/puppet/provider/package/
aix.rb blastwave.rb macports.rb pkg.rb rpm.rb yum.rb
appdmg.rb dpkg.rb msi.rb pkgdmg.rb rug.rb yumhelper.py
apple.rb fink.rb nim.rb pkgutil.rb sun.rb zypper.rb
apt.rb freebsd.rb openbsd.rb portage.rb sunfreeware.rb
aptitude.rb gem.rb pacman.rb ports.rb up2date.rb
aptrpm.rb hpux.rb pip.r portupgrade.rb urpmi.rb

These examples assume you installed Puppet from source in ~/src/ as
outlined in Appendix A. Future references to source code also make this
assumption.

Providers are one of the most common sources of community contributions to Puppet
Core. One of the most powerful things about Puppet is the amount of operational sys‐
tems knowledge already encoded into its native providers.

To find all of the providers that are currently part of Puppet, have a look in the provider
directory of the Puppet source code:

$ find ~/src/puppet/lib/puppet/provider/ -type f

In order to contribute a provider to an existing type, a developer only has to implement
two basic pieces of functionality:

1. How to query the current state of this resource
2. How to configure the system to reflect the desired state

Implementing this functionality will be explained in detail in Chapter 3.

8 | Chapter 1: Puppet Resources

www.it-ebooks.info

http://www.it-ebooks.info/

The puppet resource Command
The puppet resource command-line tool allows users to interact with resources by
querying and modifying the underlying system. This tool provides the ability to interact
with resources using the same API that is used when they are managed by the Puppet
DSL.

This provides a great way for beginners to become more familiar with how resources
function by seeing how they interact with the underlying system. It is also a great de‐
bugging tool for developing providers.

Retrieving Resources
The puppet resource command interacts directly with resources implemented in Ruby.
It relies on the provider to retrieve a list of resource instances on the system where the
command is executed. The command also accepts the type and title that uniquely iden‐
tify the resource to be queried:

puppet resource <type> <title>

The following example shows that the ftp user does not currently exist on the system:

puppet resource user ftp
user { 'ftp':
 ensure => 'absent',
}

The current state of this resource is returned to STDOUT in a format compatible with
Puppet’s DSL. In fact, the output could be redirected from this command to create a
valid Puppet manifest which could then be applied:

puppet resource user ftp > ftp_user.pp
puppet apply ftp_user.pp

Modifying Resources
puppet resource can also modify the current state of resources on the underlying
system. It accepts resource attributes as key value pairs from the command line using
the following syntax:

$ puppet resource <type> <title> ensure=<resource_state> <attribute1>=<value1>
<attribute2>=<value2> ...

The following example declares that our ftp user should exist with its home directory
set as /var/lib/ftp. If the system did not have an ftp user when this command was exe‐
cuted, you should see the following output:

$ puppet resource user ftp ensure=present home='/var/lib/ftp'
notice: /User[ftp]/ensure: created

The puppet resource Command | 9

www.it-ebooks.info

http://www.it-ebooks.info/

user { 'ftp':
 ensure => 'present',
 home => '/var/lib/ftp',
}

The message above indicates that Puppet has created this user. Once the account exists
on the system, subsequent Puppet runs will simply complete without notice messages
indicating there were no changes to the system. This also demonstrates the idempotent
nature of Puppet that we discussed earlier:

$ puppet resource user ftp ensure=present home='/var/lib/ftp'
user { 'ftp':
 ensure => 'present',
 home => '/var/lib/ftp',
}

If the user exists, we can use puppet resource to query for the current state of that
account:

$ puppet resource user ftp
user { 'ftp':
 ensure => 'present',
 gid => '1004',
 home => '/var/lib/ftp',
 password => '!',
 password_max_age => '99999',
 password_min_age => '0',
 shell => '/bin/bash',
 uid => '1003',
}

puppet resource returns more attributes than those that we explicitly
specified for that user. It actually returns all properties for the resource
being queried. Properties will be explained in detail in Chapter 2.

The puppet resource command also updates individual attributes of a resource that
already exists:

$ puppet resource user ftp shell=/sbin/nologin --debug
debug: User[ftp](provider=useradd): ↪
 Executing '/usr/sbin/usermod -s /sbin/nologin ftp'
notice: /User[ftp]/shell: shell changed '/bin/bash' to '/sbin/nologin’
...
user { 'ftp':
 ensure => 'present',
 shell => '/sbin/nologin',
}

10 | Chapter 1: Puppet Resources

www.it-ebooks.info

http://www.it-ebooks.info/

Running puppet resource with the debug option (--debug) allows you
to see the system commands executed by that resource’s provider.

The results above contain two lines of output worth mentioning:

debug: User[ftp](provider=useradd): ↪
 Executing '/usr/sbin/usermod -s /sbin/nologin ftp'

The debug output shows that the useradd provider modifies the current shell with the
usermod command. This information serves as a useful debugging tool. Users can trou‐
bleshoot failures using the exact same commands Puppet does, directly from their shell.

notice: /User[ftp]/shell: shell changed '/bin/bash' to '/sbin/nologin'

The above message, logged at notice level, shows how the modification to the underlying
system is treated as a state transition (the state of the ftp user’s shell attribute has
transitioned from /bin/bash to /sbin/nologin). Puppet treats all updates to the system as
state transitions and records them as events.

Run the same command again and note that no events occur when the system state
already matches the desired state:

puppet resource --debug user ftp shell=/sbin/nologin

This reiterates the idempotent nature of resources: Puppet does not perform any changes
if the system already matches the desired state.

Discover All Resources
We have already shown how Puppet can retrieve the current state of individual resources.
It can also query for all instances of a given resource type on a system. When combined,
these two features allow Puppet to discover the current state of all resources of a certain
type on the underlying system.

You can query for all instances of a given type using the following syntax:

$ puppet resource <type>

The following example queries all existing package resources on an Ubuntu system:

puppet resource package
package { 'accountsservice':
 ensure => '0.6.15-2ubuntu9',
}
package { 'adduser':
 ensure => '3.113ubuntu2',
}
package { 'apache2':
 ensure => '2.2.22-1ubuntu1',

The puppet resource Command | 11

www.it-ebooks.info

http://www.it-ebooks.info/

}
package { 'apache2-mpm-worker':
 ensure => '2.2.22-1ubuntu1',
}
...

This capability is implemented using the self.instances method, which will be ex‐
plained in Chapter 3.

Noop Mode
Noop (pronounced “no-ahp”) mode is a way for Puppet to simulate manifests and report
pending changes. When noop mode is enabled (using the --noop flag), Puppet queries
each resource and reports differences between the system and its desired state. This
provides a safe way to understand the potential impact of applying Puppet manifests. It
is common to use noop mode when running Puppet outside a change window, or when
you want to get a better understanding of what kinds of changes Puppet needs to make.

The Puppet Resource Model provides this capability by breaking up resource evaluation
into the following distinct phases (as shown in Figure 1-3):

1. Users declare the desired state of resources.
2. The provider discovers the current state of managed resources.
3. Puppet compares each resource’s current state against the desired state.
4. If they are not the same, the provider updates the underlying system.
5. Changes to the underlying system are recorded as events.

When Puppet is run in noop mode, it skips step #4 in the list above, and records dif‐
ferences between desired and observed state as events without making any modifications
to the system.

Catalogs
A Puppet catalog is a collection of resources compiled from a set of manifests. We’ve
already seen the manner in which resources describe how individual components of the
system should be configured. The catalog is a composition of resources that are used to
model a service or a system. The catalog can be stored centrally by PuppetDB, which
maintains a wealth of information about how your infrastructure is configured. The
catalog is easily introspected to better understand how a system should be configured,
and what dependencies might exist.

12 | Chapter 1: Puppet Resources

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-3. Resource evaluation phases in Puppet

Dependencies
Resources deploying an application often require individual components to be config‐
ured in a specific order. These dependencies are expressed as relationships in Puppet.
The order of resources can be specified using the require and before resource meta‐
parameters (special attributes that are accepted by every resource type) or with the
autorequire method, which will be discussed in the next chapter. When Puppet applies
a catalog, its resources will not be applied until all of their dependencies are satisfied.

These example manifests show how the require and before metaparameters can con‐
struct the same catalog:

package { 'apache2':
 ensure => present,
}
service { 'apache2':
 ensure => running,
 require => Package['apache2']
}

Catalogs | 13

www.it-ebooks.info

http://www.it-ebooks.info/

package { 'apache2':
 ensure => present,
 before => Service['apache2'],
}
service { 'apache2':
 ensure => running,
}

Catalog as a Graph
The data structure of the catalog is a graph. Graphs are characterized as a collection of
objects where some of the object pairs are interconnected. The objects are referred to
as vertices and the the links between pairs of those objects are edges. As shown in
Figure 1-4, the vertices of the catalog are Puppet resources, and the edges are the de‐
pendencies between those resources.

The graph that represents Puppet’s catalog has two primary characteristics: it is direc‐
ted and acyclical.

Directed
The Puppet Catalog is said to be a directed graph because all of its edges have a direction;
that is, every edge designates the order in which a pair of resources needs to be applied.

Figure 1-5 shows how before and require add directed edges to create a graph:

package { 'apache2':
 ensure => present,
 before => File['apache2'],
}
file { 'apache2':
 name => '/etc/apache2/apache2.conf',
 content => template('apache/apache.erb'),
}
service { 'apache2':
 ensure => running,
 require => File['apache2'],
}

14 | Chapter 1: Puppet Resources

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-4. Puppet catalog graph

Catalogs | 15

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-5. Directed edges created by before and require

Acyclical
Since the order in which resources are applied is indicated by the edges of the graph, it
follows that there cannot be cycles in the graph. If cycles exist in a graph, Puppet cannot
determine the order in which things should be applied.

Consider the following manifest that introduces a dependency cycle. Each resource
specifies a dependency on the other resource. It Puppet interpreted these dependencies
literally, it would indicate that no resources could ever be applied. Fortunately Puppet
detects these kinds of cycles and fails before trying to apply the catalog.

package { 'apache2':
 ensure => present,
 require => Service['apache2']
}
service { 'apache2':
 ensure => running,
 require => Package['apache2']
}

16 | Chapter 1: Puppet Resources

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion
Thus far, we’ve looked at the core characteristics of resources (uniqueness, idempotent,
declarative), how they are composed by Puppet’s DSL, and how they interact with the
underlying system. With this fundamental understanding of resources, we are ready to
move on to how they are created using Puppet’s type and provider APIs.

Conclusion | 17

www.it-ebooks.info

http://www.it-ebooks.info/

18 | Chapter 1:

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Types

The type API expresses resources that can be leveraged from Puppet’s DSL to manage
the underlying system. In fact, all native resource types that ship as a part of Puppet
(packages, users, files, services, …) are implemented using the type API covered in this
chapter. In addition, the type API specifies the attributes for describing each resource.
For example:

• Files have modes.
• Users have shells.
• Hosts have IP addresses.

This API offers developers a simple collection of Ruby methods to create resource in‐
terfaces that serve as an abstraction layer on which multiple providers can be imple‐
mented. It also allows sysadmins to describe system configuration as resources without
understanding the procedures developers have implemented via providers.

This section will focus on how custom types are written in Ruby, and will cover the
following:

• How to create a custom type
• How to add attributes to a type
• Special attributes

— Namevars
— Properties
— ensure property
— Parameters

Types | 19

www.it-ebooks.info

http://www.it-ebooks.info/

• Input validation and data transformation
• Implicit resource dependencies

Defining Puppet Types
Resource types are defined by calling the newtype method on the Puppet::Type class
and passing it a symbol representing the name of the type to create.

Ruby Symbols
In Ruby, symbols are constructed by placing a colon before a string
(i.e., :hello or :"hello"). Symbols are often used instead of strings in
Ruby for performance reasons because symbols, unlike strings, refer to
a unique object. Because of this, symbols consume less memory and
facilitate faster comparisons than strings.

The following example creates a custom_user resource with the newtype method:

Puppet::Type.newtype(:custom_user) do
end

In Ruby, the names of source files must match the namespace of the Ruby class that they
contain. Since Puppet Types and Providers are implemented in Ruby, they follow this
convention. Since the example above creates the Ruby class Puppet::Type::Cus
tom_user, it should be located in the source file: puppet/type/custom_user.rb. This file
should be created inside of a module like any other Puppet extension.

The directory structure below shows a module called example that contains the source
code for our custom type.

`-- /etc/puppet/modules/example
 |-- lib
 | `-- puppet
 | |-- type
 | | `-- custom_user.rb
 | `-- provider
 | `-- ….

A list of all the native types that ship as part of Puppet can be retrieved by listing the
contents of the puppet/type directory (assuming Puppet is installed from source as de‐
scribed in Appendix A):

$ ls ~/src/puppet/lib/puppet/type

20 | Chapter 2: Types

www.it-ebooks.info

http://www.it-ebooks.info/

The name of files in this directory correspond to the names of all of the native types that
are distributed with Puppet. For example, Puppet’s User resource is defined in the source
file:

~/src/puppet/lib/puppet/type/user.rb
Puppet::Type.newtype(:user) do
 # lots of code...
end

Type Examples From Puppet Source
Some of the native types from Puppet’s source code define the type by
calling newtype on the Puppet module. Creating types using Pup
pet::Type.newtype is the recommended way going forward. Keep in
mind that the existing native types may be slightly different than how
the API is presented in this book. This is because the native types have
evolved with Puppet. Some of the practices taught in this book may have
not been available when some of the earlier types were written.

Continuing our example, let’s create a custom type to manage packages called cus
tom_package.

The custom_package type is not intended to serve as a replacement of
Puppet’s existing package type. It serves as an example of how to take
advantage of the features of the type and provider APIs.

First, create the custom_package type source file in our example module:

/etc/puppet/modules/example/lib/puppet/type/custom_package.rb
Puppet::Type.newtype(:custom_package) do

end

The type code cannot be loaded by Puppet if the file source path does
not match the name of the type.

Although we have created a new resource type, it cannot be declared using the Puppet
DSL. A valid resource declaration requires the type, as well as a title that uniquely iden‐
tifies the resource being specified. At this point, we have created a new kind of resource,

Defining Puppet Types | 21

www.it-ebooks.info

http://www.it-ebooks.info/

namely custom_package, but we have not expressed any of the attributes used to manage
it. As soon as we add a special attribute, called its namevar, we can declare our new
resource in the Puppet DSL. Attributes and the namevar will be covered in the next
section.

Attributes
The type API provides methods for creating the attributes used to describe the charac‐
teristics of a resource. When a resource is declared in the Puppet DSL, its attributes are
all expressed as key value pairs:

type { 'title':
 key1 => 'value1',
 key2 => 'value2',
}

This section will walk through an example that adds the following attributes to our
custom_package type: name, ensure, version, source, and replace_config. When this
type is completed, it will support the description below:

custom_package { 'apache':
 ensure => present,
 name => 'apache2',
 version => '2.2.22-1ubuntu1',
 source => 'http://myrepo/apache2.deb',
 replace_config => yes,
}

Namevars
A namevar is a special kind of attribute that serves as the identity of a resource on the
underlying system. When creating a new resource type, the first task is to choose a
namevar. The most important property about a namevar is that it must uniquely identify
the resource. In this sense, the namevar can be thought of as the resource’s primary key.
Most resources that need to be managed have unique identifiers:

• Path of a file
• Name of a user, group, package, or service

The name of a file, unlike many of the other native types in Puppet, is not a suitable
namevar because it is not unique across a system. Multiple files with the same name can
exist in different directories. The fully qualified file path is better suited for this purpose
since each path identifies a single unique resource.

22 | Chapter 2: Types

www.it-ebooks.info

http://www.it-ebooks.info/

Pro Tip
Namevars should use a characteristic that can be predicted before a
resource exists. For example, each Windows user is associated with a
globally unique identifier (GUID) that is generated randomly when the
user is created. Even though each GUID is associated with a unique
user, it is not suitable as a namevar because the manifest’s author cannot
pre-specify the value when declaring a resource.
GUID is an implementation of a more general concept called a Universal
Unique ID (UUID). Often, resources with UUIDs do not have another
unique property that can be predetermined. In these cases, it is often
necessary to pick a different characteristic as the namevar and have
Puppet enforce the uniqueness of that attribute on the underlying sys‐
tem. An example is Amazon’s EC2, where all machine instances are
uniquely referred to by UUIDs that cannot be predicted. In this case,
instance metadata can be used as a label to identify the system as long
as Puppet enforces it as a unique key across all virtual machine instances
in EC2.

We can set a namevar for our custom_package example by adding the following code:

Puppet::Type.newtype(:custom_package) do
 ...
 newparam(:name, :namevar => true) do
 end
end

In the Puppet source code, many parameters are designated as name
vars with the isnamevar method:

newparam(:name) do
 isnamevar
end

Although isnamevar also serves the same purpose, using :namevar ⇒
true is the recommended style going forward for setting namevars. In
this book, if there is more than one way to do something, we will focus
on the preferred method.

Now that we have specified a namevar for our type, we can declare a valid resource using
the custom_package type:

custom_package { 'apache': }

When a user omits the resource’s namevar, Puppet defaults the value to the resource’s
title. Since the custom_package resource above is declared without the name attribute,

Attributes | 23

www.it-ebooks.info

http://www.it-ebooks.info/

the namevar is set to the value of its title: apache. Although the title and namevar are
commonly the same, they serve two different purposes in Puppet. The title is used to
reference the resource in the Puppet catalog, and the namevar indicates the system’s
name for the resource.

The example below demonstrates a situation where the namevar is not the same as a
resource’s title. The title of that resource is apache and its namevar is httpd. This resource
can be referenced as apache, but the package under management is httpd:

custom_package { 'apache':
 name => 'httpd',
}

$ puppet apply -e "custom_package { 'apache': }"
notice: Finished catalog run in 0.04 seconds

The command above verifies that Puppet can properly load our new type and that it has
a namevar. However, our resource declaration above does not describe anything that
can be managed. The next section discusses special attributes, called properties, that
specify the things that Puppet manages.

Properties
Properties are attributes that model the state of a resource on the underlying system;
Puppet actively enforces their value on the system. Every time Puppet runs, it retrieves
the current value of every property and compares it to the value specified in the resource
declaration.

Properties are also the main integration point between types and providers. Types spec‐
ify which properties exist, and providers supply the implementation details for how
those properties are managed on the system.

Figuring out if an attribute should be a property is one of the most important design
decisions for a resource type. In general, you can decide if an attribute should be a
property by asking the following questions:

• Can I discover the state of this attribute?
• Can I update the state of this attribute?

If the answer to both of those questions is yes, then that attribute should be implemented
as a property. In general, if the answer to one or both of these questions is no, then the
characteristic should not be a property.

24 | Chapter 2: Types

www.it-ebooks.info

http://www.it-ebooks.info/

Pro Tip
Certain attributes, such as UUIDs, can be queried from the system but
cannot be updated. These attributes can be implemented as read-only
properties so that puppet resource still returns their value when in‐
specting the system.

Properties are added to types by calling Puppet::Type’s newproperty method and pass‐
ing it a symbol that represents the name of the property.

Our custom_package type needs a version property to manage the current version of
an installed package:

Puppet::Type.newtype(:custom_package) do
 ...
 newproperty(:version) do
 end
end

Now this resource can be declared in Puppet as follows:

custom_package { 'apache':
 version => '2.2.22-1ubuntu1',
}

Applying the above resource results in failure because we have not implemented the
provider methods for managing package versions. We will walk through the process of
implementing these methods in the next chapter.

$ puppet apply -e 'custom_package { "apache": version=>1.2}'
err: /Stage[main]//Custom_package[apache]: Could not evaluate: undefined method
`version' for nil:NilClass
notice: Finished catalog run in 0.04 seconds

Now that you understand what properties are, let’s discuss a special property called
ensure.

The ensure Property
ensure is a property that models the existence of a resource. Most resource types support
the ensurable property, meaning that their existence on the system can be discovered
and managed by Puppet. Some examples of native types that are not ensurable are Exec,
Notify, and Stage.

You add the ensure property to a type with the ensurable method:

Puppet::Type.newtype(:custom_package) do
 ensurable
 ...
end

Attributes | 25

www.it-ebooks.info

http://www.it-ebooks.info/

This method adds the ensure property to our resource type, which accepts two values.
Providers manage the ensure property by implementing the create, exists?, and
destroy methods. The implementation of these methods will be explained in detail in
the next chapter.

We can now use the ensure property to describe that a resource should exist:

custom_package { 'apache':
 ensure => present,
}

Or that it should not exist:

custom_package { 'apache':
 ensure => absent,
}

Properties are only used to express things that need to be managed by Puppet. The next
section discusses another type of attribute, called parameters.

Parameters
Parameters supply additional information to providers, which is used to manage its
properties. In contrast with properties, parameters are not discovered from the system
and cannot be created or updated.

Parameters allow you to specify additional context or the ability to override a provider’s
default behavior. For example, the service resource supports the following parameters:
start, stop, status, and restart. None of these attributes reflect the state of a service.
Instead, they override the commands a provider uses to interact with services on the
system.

You may have now realized that the namevar, which we discussed earlier, is also a pa‐
rameter. Changing the namevar of a resource does not cause a resource instance’s state
to be modified, it indicates that a different resource is being managed.

Our custom_package example needs a parameter called source to instruct the provider
where it can find the package to install. The following code adds this parameter:

Puppet::Type.newtype(:custom_package) do
 ...
 newparam(:source) do
 end
end

Now you can provide the location of a package to install:

custom_package { 'apache':
 ensure => present,
 source => 'http://package_repo/apache.rpm',
}

26 | Chapter 2: Types

www.it-ebooks.info

http://www.it-ebooks.info/

Puppet can’t determine the source that was used to install an existing package. It also
can’t update the source used to install a package. The source is only used by the provider
during installation to update the ensure property.

Some packages include default configuration files. Package providers typically support
the ability to indicate during upgrades whether new packages should override existing
configuration files. By default, customized configuration files are retained during soft‐
ware upgrades.

The code below adds an additional parameter to determine whether or not our cus
tom_package resources should override existing configuration files during upgrade
operations:

Puppet::Type.newtype(:custom_package) do
 ...
 newparam(:replace_config) do
 end
end

As mentioned before, packages typically do not replace existing configuration files by
default. In the next section, we’ll discuss how a default value can be specified for the
replace_config parameter.

Default Values
The defaultto method is used to specify default values for any attribute. Defaults are
typically only specified for parameters. They are less common for properties because a
default value will result in that property always being managed (there is no way to unset
a value for the property).

The replace_config parameter from our example should default to “no” (indicating
that upgrade operations should not override existing configuration files). Default values
are specified for any parameter or property with defaultto:

Puppet::Type.newtype(:custom_package) do
 newparam(:replace_config) do
 defaultto :no
 end
end

Defaults should not be specified for an attribute unless it is universally applicable to all
instances of that resource. Puppet provides a convenient syntax to specify resource de‐
faults in the DSL which is generally preferred for properties:

Custom_package {
 ensure => present,
}
custom_package { ['package_one', 'package_two']: }

Default Values | 27

www.it-ebooks.info

http://www.it-ebooks.info/

The next section will discuss type API methods that support validating resource
declarations.

Input Validation
Input validation supplied by the type API provides informative error messages when
resources are declared with invalid attribute values. Input validation occurs before any
resources are applied, so a failure will prevent the entire catalog from being applied.

There are two methods that support validation in the Type API: validate and
newvalues.

Validate
The validate method validates parameters, properties, and the complete state of the
resources being declared. When an attribute value is declared, Puppet will invoke the
validate method if defined. This method will always be called if a default value is sup‐
plied. Validate can also be called on the type itself—this allows you to enforce required
attributes or validate combinations of attribute values.

Validate accepts a block where the validation rules are implemented:

validate do |value|
 # block of code
end

Ruby Blocks
The syntax do/end in Ruby indicates that a block of code is being passed
as an argument to a method.

If the resource is invalid, the validation block should raise an exception and Puppet will
not apply the catalog. The fail method can be used to raise a Puppet::Error exception
accompanied by a sensible message explaining why the validation error has occurred.

Ruby Exceptions
Exceptions are used in Ruby to indicate an error has occurred that af‐
fects the normal operation of a program. Exceptions in Puppet are usu‐
ally of the Puppet::Error class.

In our custom_package example, we should verify that users supplied a valid source
path or URL, as well as a sensible version string.

28 | Chapter 2: Types

www.it-ebooks.info

http://www.it-ebooks.info/

First, let’s use Ruby’s built-in libraries Pathname and URI to express that valid sources
are either absolute filepaths or HTTP URIs:

require ‘pathname’
require ‘uri'
Puppet::Type.newtype(:custom_package) do
 newparam(:source) do
 validate do |value|
 unless Pathname.new(value).absolute? ||
 URI.parse(value).is_a?(URI::HTTP)
 fail("Invalid source #{value}")
 end
 end
 end
end

The following example shows how to specify the valid character sets that can be used
to compose our package versions:

Puppet::Type.newtype(:custom_package) do
 ...
 newproperty(:version) do
 validate do |value|
 fail("Invalid version #{value}") unless value =~ /^[0-9A-Za-z\.-]+$/
 end
 end
end

Ruby Regular Expressions
Regular expressions in Ruby are denoted with a leading and trailing
forward slash (i.e., /\d+/).

The next example uses global validation to specify that a source must always be set when
ensure is present. Any resource attribute’s value can be accessed via self with the at‐
tribute symbol as the key:

Puppet::Type.newtype(:custom_package) do
 ...
 validate do
 fail(‘source is required when ensure is present’) if self[:ensure]
== :present and self[:source].nil?
 end
end

Input Validation | 29

www.it-ebooks.info

http://www.it-ebooks.info/

newvalues
The newvalues method restricts attributes to a list of valid values. This list is composed
of an array of strings, symbols or regular expressions. This provides a much more concise
method than the validate method for restricting an attribute to a set of valid values.

The newvalues and newvalue methods are not the same. newvalues
only expresses valid values, while newvalue expresses how specific
values trigger certain provider methods. newvalues is valid for all at‐
tributes while newvalue is only valid for properties.

The example code below demonstrates how to restrict the values for the replace_con
fig parameter to only accept yes or no:

Puppet::Type.newtype(:custom_package) do
 newparam(:replace_config) do
 defaultto :no
 newvalues(:yes, :no)
 end
end

The newvalues method also accepts regular expressions as an argument. The following
example restricts values of source to either absolute paths or http(s):

Puppet::Type.newtype(:custom_package) do
 ...
 newparam(:source) do
 newvalues(/https?:\/\//, /\//)
 end
end

After Puppet performs validation for its types, it is possible to transform the attribute’s
inputs to a specific format. The next section will discuss how this is implemented using
the munge method.

munge
The munge method is used to transform user input before Puppet compares it to the
values returned by the provider. To determine if a property needs to be updated, Puppet
performs a simple equality comparison between the current value and the value re‐
trieved by the provider. munge can ensure the user-supplied data type is consistent with
the values returned by the provider.

For the following custom_user resource, munge ensures that the retrieved value is always
compared against an integer. This enables the users to specify either a number or a
numeric string value for uid:

30 | Chapter 2: Types

www.it-ebooks.info

http://www.it-ebooks.info/

Puppet::Type.newtype(:custom_user) do
 newparam(:uid) do
 munge do |value|
 Integer(value)
 end
 end
end

When both munging and validation are specified for an attribute, the
validation method always occurs before munging.

AutoRequire
The autorequire method builds implicit ordering between resources in the catalog.
This allows types to specify well established dependencies that should always exist be‐
tween certain resources. Many Puppet types take advantage of this feature to prevent
users from having to explicitly declare tedious relationships between resources:

• Files always depend on their parent directories.
• Users always depend on their groups

For example, if the custom_package source parameter is a local filepath, then we always
want to ensure this file is managed before the package is installed:

Puppet::Type.newtype(:custom_package) do
 ...
 autorequire(:file) do
 self[:source] if self[:source] and Pathname.new(self[:source]).absolute?
 end
end

Unlike resource dependencies specified in the Puppet DSL, this is a soft dependency—
it is only specified if the required resources it depends on exist in the catalog. The man‐
ifest below does not include the file resource tmp/apache.deb. However it can be applied
without errors:

custom_package { 'apache':
 ensure => present,
 source => '/tmp/apache.deb',
}

Dependencies in the Puppet DSL have a higher precedence than any implicit depen‐
dencies specified with the autorequire method. This can be handy for cases such as
uninstallation, where the order in which resources need to be applied is reversed. The
example below does not create a dependency cycle, because the require parameter set
in the file resource will override the implicit dependency.

AutoRequire | 31

www.it-ebooks.info

http://www.it-ebooks.info/

custom_package { 'apache':
 ensure => absent,
 source => '/tmp/apache.deb',
}
file { '/tmp/apache.deb':
 ensure => absent,
 require => Custom_package['apache'],
}

All of the examples that we have seen so far used simple primitives to assign a single
value to each attribute—Puppet is able to handle strings, integers, and booleans this way.
The next section will explain how arrays are used as attribute inputs.

Arrays
Arrays are used to assign a list of values to an attribute. If a resource of type cus
tom_user called foo belongs to multiple groups, then this attribute would be supplied
as an array:

custom_user { 'foo':
 ensure => present,
 groups => ['admin', 'developer'],
}

When the expected value of an attribute is an array, there are a couple of additional
things that need to be implemented in the type.

You need to pass in the option array_matching with its value set to all. This tells Puppet
to treat all values of the array as the value for that attribute:

Puppet::Type.newtype(:custom_user) do
 newproperty(:groups, :array_matching => :all) do
 end
end

Inline Documentation
Once you’ve finished writing your custom type, you’ll want to provide some documen‐
tation about it. Inline documentation can be embedded in the Ruby source code using
the desc method, which can be called on the type itself as well as for each parameter
and property of that type.

Then users can retrieve your inline documentation with either the puppet describe or
puppet doc command.

For full documentation of all types currently configured in your puppet environment,
including custom resources installed via Puppet modules, run the following command:

$ puppet describe --list

32 | Chapter 2: Types

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s complete our example custom_package type with full inline documentation:

Puppet::Type.newtype(:custom_package) do

 desc 'custom_package is an example of how to write a Puppet type.'

 ensurable

 newparam(:name, :namevar => true) do
 desc 'The name of the software package.'
 end

 newproperty(:version) do
 desc 'version of a package that should be installed'
 validate do |value|
 fail("Invalid version #{value}") unless value =~ /^[0-9A-Za-z\.-]+$/
 end
 end

 newparam(:source) do
 desc 'Software installation http/https source.'
 newvalues(/https?:\/\//, /\//)
 #validate do |value|
 # unless Pathname.new(value).absolute? ||
 # URI.parse(value).is_a?(URI::HTTP)
 # fail("Invalid source #{value}")
 # end
 #end
 end

 newparam(:replace_config) do
 desc 'Whether config files should be overridden by package operations'
 defaultto :no
 newvalues(:yes, :no)
 end

 autorequire(:file) do
 self[:source] if self[:source] and Pathname.new(self[:source]).absolute?
 end

 # This has been commented out b/c it is just an example.
 # Because all providers will not have a source parameter, this validation
 # should be on the providers and not the type.
 # validate do
 # fail('source is required when ensure is present')
 # if self[:ensure] == :present and self[:source].nil?
 #end
end

Inline Documentation | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion
This chapter covered the type API, walking through the process of creating an example
type called custom_package. Although you can now create resource of this type in Pup‐
pet’s DSL, the resource does not have a way to manage packages until it has a functional
provider. In the next chapter, we will build upon our example and demonstrate how to
implement multiple providers for this resource on a variety of platforms.

34 | Chapter 2: Types

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Providers

Providers implement the actions used to manage resources on a system. Where types
express the interfaces used to describe resources, providers implement how resources
interact with the underlying system. This clear separation between the interface and the
implementation allows multiple providers to be specified for each type. The native type
package, for example, has separate providers that can interact with package utilities
across a large number of Linux systems, including apt, yum, rpm, and zypper.

In the last chapter, we created a type called custom_package, along with a list of attributes
describing the resource. This type can be used to express packages that Puppet manages,
like the following example:

custom_package { 'httpd':
 ensure => present,
 version => '1.2.3-5',
}

This chapter will demonstrate how to implement multiple providers for our cus
tom_package type and covers the following:

• How to create a custom provider and associate it with a type
• How Puppet determines the most appropriate provider
• How providers manage resource state
• How providers query for a list of all instances
• Provider optimizations

35

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Provider
Because providers manage the system state described by a resource type, you must first
retrieve the instance of a type associated with the provider. The type method can be
called on Puppet::Type to access any instance of either a native or custom type that
Puppet knows about.

Many of the examples in this chapter will use irb to interact directly with
Puppet through Ruby methods. This allows you to quickly dig into
Puppet’s APIs without having to write Ruby source files and Puppet
manifests. The character >> indicates example code that is run inter‐
actively in irb and ⇒ indicates the value returned from an expression
evaluated in irb.

The examples below show how to retrieve a type and associate a provider with it in irb.

>> require 'puppet'
>> Puppet::Type.type(:package)
=> Puppet::Type::Package

The provide method associates a provider with a specific type. The example below
demonstrates how an apt provider is added to our example custom_package type from
the last chapter:

>> require 'puppet'
>> Puppet.parse_config
>> Puppet::Type.type(:custom_package).provide(:apt)
=> Puppet::Type::Custom_package::ProviderApt

Custom providers are stored in a directory matching the name of the type with which
they are associated. This directory is located in a module under the lib/puppet/provid‐
er folder. The name of the file should reflect the provider that is implemented. The
following example shows the directory structure of a module that adds apt, rpm and yum
providers to our custom_package type:

`-- lib
 `-- puppet
 |-- provider
 | `-- custom_package
 | |-- apt.rb
 | `-- rpm.rb
 | `-- yum.rb
 `-- type
 `-- custom_package.rb

The following template demonstrates how the full path of a provider is constructed:

<module_path>/<module_name>/lib/puppet/provider/<type_name>/<provider_name>.rb

36 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

Like types, providers must be located in the correct directory in order
for Puppet to properly load them. When Puppet is running in agent/
master mode, they must also be pluginsynced to the agents.

The code below adds multiple providers for apt, rpm, and yum to our example type,
custom_package:

/etc/puppet/modules/example/lib/puppet/provider/custom_package/rpm.rb
Puppet::Type.type(:custom_package).provide(:rpm) do
end

/etc/puppet/modules/example/lib/puppet/provider/custom_package/yum.rb
Puppet::Type.type(:custom_package).provide(:yum) do
end

/etc/puppet/modules/example/lib/puppet/provider/custom_package/apt.rb
Puppet::Type.type(:custom_package).provide(:apt) do
end

By convention, provider names reflect the utility they use to interface
with the system. For example, the providers above have been named
after their package management commands.

You can call the providers method on an instance of a type to list all providers that
have been associated with that type. This can be useful for figuring out if Puppet can
properly locate your custom providers. The following example shows how to get a full
list of all providers associated with Puppet’s native type Package:

>>require 'puppet'
>>Puppet::Type.type(:package).providers
=> [:windows, :portage, :pkgin, :macports, :rpm, :appdmg, :aix, :up2date,
:ports, :pkgutil, :fink, :nim, :blastwave, :apt, :portupgrade, :yum, :pip,
:sun, :dpkg, :pkgdmg, :aptitude, :apple, :pkg, :msi, :freebsd, :sunfreeware,
:pacman, :zypper, :urpmi, :rug, :gem, :openbsd, :aptrpm, :hpux]

Now that we have demonstrated how to create providers and associate them with a
corresponding type, the next sections will explain how they are implemented. When
Puppet encounters a resource type, the first task is to iterate through all of the providers
for that type, in order to determine which one is most appropriate for the current system.

Creating a Provider | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Suitability
Because it is possible to have multiple providers for the same resource type, the provider
API has three methods that determine which provider is most appropriate for a given
system: confine, defaultfor, and commands. The confine and commands methods de‐
termine which providers are valid, and defaultfor indicates the default provider to use
when there are multiple suitable providers.

confine
The confine method determines whether the current system applying a resource is
capable of using a given provider. When processing a resource in the catalog, Puppet
loads all of the providers for each resource type and uses confine to determine which
providers are valid on the current system. A provider may specify multiple confines,
and all conditions must be satisfied to deem the provider suitable.

This section will discuss confinement in detail, describing the different sources of in‐
formation that Puppet can use to determine suitability: facts, files, features, or the
boolean result of an arbitrary code block.

Fact confinement

The confine method can use Facter data collected from the current system to determine
if a provider is valid. The operatingsystem fact is the most common source of infor‐
mation used for confinement, because providers are typically associated with a specific
platform. The facts kernel and osfamily are also commonly used for provider con‐
finement.

The confine method accepts a hash that maps the fact names to values that are used to
indicate if a certain host is suitable for a provider:

confine :fact_name => :fact_value

The example below demonstrates how the confine method restricts a package provider
to only Redhat-based distributions:

Puppet::Type.type(:custom_package).provide(:yum) do
 confine :operatingsystem => [:redhat, :fedora, :centos, :scientific]
end

The osfamily fact was introduced in Facter 1.5.7. The following example specifies mul‐
tiple providers that are suitable for Redhat distros using the osfamily fact for confine‐
ment:

Puppet::Type.type(:custom_package).provide(:rpm) do
 confine :osfamily => :redhat
end

38 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

Puppet::Type.type(:custom_package).provide(:yum) do
 confine :osfamily => :redhat
end

In addition to facts, Puppet supports several other special confinement keys that deter‐
mine suitability of providers.

File confinement

The confine method can use exists to base confinement on whether a specific file is
present on the managed system.

The example below demonstrates how a provider managing the Puppet config file is
restricted to systems where a valid Puppet configuration file already exists:

Puppet::Type.type(:puppet_config).provide(:ruby) do
 # Puppet[:config] varies depending on the account running puppet.
 # ~/.puppet/puppet.conf or /etc/puppet/puppet.conf
 confine :exists => Puppet[:config]
end

All Puppet configuration settings are accessible by indexing the name
of the setting as a symbol out of the Puppet hash. The irb example below
shows how to interactively determine the values of a few settings (Pup
pet.parse_config is only required in Puppet ≥ 3.0):

> require 'puppet'
=> true
> Puppet.parse_config
=> ...
> Puppet[:config]
=> "/etc/puppetlabs/puppet/puppet.conf"
> Puppet[:vardir]
=> "/var/opt/lib/pe-puppet"

Feature confinement
Puppet provides a capability called features, which maintains a list of functionalities
supported by the current system. This collection of features reflects the current Puppet
run mode, the operating system type (POSIX vs. Windows), and whether specific
libraries/software packages are installed on the system. Features are another supported
criteria for confinement. The following features are available for provider confinement:
augeas, selinux, libshadow, root, ssh, microsoft_windows, posix.

The complete list of Puppet features is available in the following direc‐
tory of Puppet’s source code: ~/src/puppet/lib/puppet/feature/.

Suitability | 39

www.it-ebooks.info

http://www.it-ebooks.info/

This gem provider for our custom_package confines itself using Puppet’s built-
in :rubygems feature so that it is only suitable on systems where Ruby’s package manager
is installed:

Puppet::Type.type(:custom_package).provide(:gems) do
 confine :feature => :rubygems
end

Boolean confinement

confine also accepts :true and :false boolean values to restrict providers. This is the
most flexible confinement method because it compares the return result of arbitrary
executed code to :true or :false respectively.

The following code demonstrates a provider that can only be used if puppet.conf has an
agent section:

Puppet::Type.type(:agent_config).provide(:parsed) do
 confine :exists => Puppet[:config]
 confine :true => begin
 if File.exists?(Puppet[:config])
 File.readlines(Puppet[:config]).find {|line| line =~ /^\s*\[agent\]/ }
 end
 end
end

The keywords begin and end are used to denote a block. The value
returned by the block is the value of the last evaluated expression (just
like a method). This allows us to pass a section of code without having
to write a specific method for the boolean confinement.

defaultfor
confine is a convenient way to specify which providers are suitable for a given system,
but it may still result in multiple valid providers for a resource type. In this situation,
the type should specify its prefered provider with the defaultfor method.

This method accepts a fact name and value that are used to determine which provider
is the default for certain types of systems:

defaultfor :fact_name => :fact_value

In our previous example, both the yum and rpm providers are valid for our custom_pack
age type on Redhat systems. The defaultfor method can be used in conjunction with
the operating system fact to specify that yum is the default provider for Redhat systems:

40 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

Puppet::Type.type(:custom_package).provide(:yum) do
 confine :osfamily => :redhat
 defaultfor :osfamily => :redhat
end

When multiple providers specify defaultfor and satisfy all confinement conditions,
Puppet will pick the first suitable provider and log a warning. When developing pro‐
viders, do not set defaultfor when there is no clear preferred choice among multiple
providers. In these situations, Puppet users can explicitly request a specific provider by
declaring the provider metaparameter in Puppet’s DSL. This also permits users to
override the default provider when the system supports more than one suitable provider.

Gem packages are a great example of this use case. Gem package management is con‐
fined to systems where rubygems are installed as indicated by the rubygems feature.
However, gems would never be preferred as the default over the system’s native package
manager. Gems can only be managed by explicitly setting the provider as below:

package { 'json':
 ensure => present,
 provider => 'gem',
}

Providers can also be confined based on whether certain commands are available in the
current system PATH by using the commands method. This is covered in more detail in
the next section, because it does much more than just confine a provider based on the
availability of a command.

commands
Providers commonly interact with the underlying system by invoking command-line
utilities. The commands method encapsulates a set of commands as Ruby methods
available in the provider’s definition. These dynamically created methods accept a list
of arguments that are passed to the command line invocation. Providers (such as those
for Puppet’s file resource type and host resource type) can manage resources directly
via Ruby APIs, but it is more common to interact via commands.

The commands method also confines providers based on the commands available when
Puppet applies a resource. Any command specified using this method must be present
in order for that provider to be used.

Starting in Puppet 2.7.8, all confinement of providers in Puppet is “lazy,”
meaning that suitability for providers is determined the first time a re‐
source of a type is evaluated. This means Puppet can install a package
that makes a command available on the same run where it is used. Pre‐
viously, the method optional_commands specified commands that are
optional, but this is no longer necessary with lazy evaluation.

Suitability | 41

www.it-ebooks.info

http://www.it-ebooks.info/

We can now specify the commands that are used by a few of our custom_package
providers:

Puppet::Type.type(:custom_package).provide(:yum) do
 ...
 commands :rpm => 'rpm', :yum => 'yum'
end

Puppet::Type.type(:custom_package).provide(:apt) do
 ...
 commands :apt => 'apt', :dpkg => 'dpkg'
end

When an absolute path is not specified, Puppet will search through each
directory in the environment variable $PATH until the command is dis‐
covered. This is the preferred method for locating commands, since
different operating systems may store commands in different directo‐
ries and Puppet will detect them as long they are in the system load
path. Fully qualified paths should only be used if the command is lo‐
cated in an unusual path that is not in the system default path, such
as /opt/puppet/bin/gem for the Puppet Enterprise bundled gem com‐
mand instead of the system gem.

This example shows how to create a method called apt_get and use it to force install
an apt package. The dash from the apt-get command is switched to an underscore
because dashes are not allowed in Ruby method names:

Puppet::Type.type(:custom_package).provide(:apt) do
 ...
 commands :apt_get => "apt-get"
 ...
 def force_install_package(package_name = resource[:name])
 apt_get('install', '-f', package_name)
 end
 ...
end

Using the methods generated by commands has several advantages over Ruby’s built-in
methods for executing commands such as %x{cmd} or ‘cmd’:

• Puppet displays all commands invoked from these methods when the --debug flag
is set.

• Commands are documented as a requirement for the provider.

42 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

• The Puppet::ExecutionFailure exception is raised if the command has a non-
zero exit code. This ensures that command failures are consistently handled
throughout all providers.

Now that we have informed Puppet which commands are used to interact with the
system, the next step is to implement the internals of our providers.

Properties and Providers
Previously, we discussed how Puppet’s resource abstraction layer provides a clear sep‐
aration between types and providers. Properties are the key to this separation. They
describe the attributes of a resource that its providers are responsible for managing. For
each property of a type, its providers are responsible for two actions:

• Retrieving the current state of that property
• Updating the resource state to match the desired state (as described by the resource)

Each of these actions is generally implemented as a single method per property.

In order to manage the state of our custom_package resource on the underlying system,
Puppet must be able to do the following things:

1. Determine if a package is currently installed on the platform.
2. Discover the current version of the installed package.
3. Manage the state of the package by performing actions such as installation, removal,

and upgrades.

This section will dive into the details of the provider methods that perform these actions,
starting with a special property called ensure that handles resource creation and de‐
struction.

ensure Property
ensure is a special property that models the existence of a resource. Until you implement
ensure, resources cannot be created or destroyed. As we discussed in the previous
chapter, invoking the ensurable method on a type adds the ensure property with the
allowed values absent and present:

Puppet::Type.newtype(:custom_package) do
 ensurable
end

Properties and Providers | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Now a resource of our type custom_package can be described as being absent or present.
The value present on the ensure property indicates that the resource should be created
if it does not already exist:

custom_package { 'httpd':
 ensure => present,
}

The value absent indicates that the resource should be destroyed if it already exists:

custom_user { 'dan':
 ensure => absent,
}

In order to support the ensure property, resource providers must be able to check if the
resource already exists, create resources that do not exist, and destroy resources that
already exist. This functionality is implemented with the following methods: exists,
create, and destroy.

exists? method

The exists? method is used to retrieve the current ensure state of a resource. It returns
a boolean value to express whether the resource is already present on the system.

By convention, Ruby methods that end with ? are expected to return
either true or false.

In order to determine if a resource exists, the provider needs access to the resource’s
namevar and all attribute values used to declare that resource.

Providers responsible for managing the following resource need to know the package
name (httpd) to determine if it exists:

custom_package { 'apache2':
 name => 'httpd',
 ensure => present,
}

Any parameter can be retrieved via the resource method using the attribute name as
the key. Each attribute can be indexed using the [] notation and supplying the name of
the attribute to retrieve as a symbol. The example below uses resource[:name] to access
the namevar of the package being managed. It passes this value to the rpm method created
by the commands method to determine whether the package is installed:

Puppet::Type.type(:custom_package).provide(:yum) do
 confine :osfamily => :redhat

44 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

 commands :yum => '/usr/bin/yum',
 :rpm => '/bin/rpm'

 def exists?
 begin
 rpm('-q', resource[:name])
 rescue Puppet::ExecutionFailure => e
 false
 end
 end
end

When Puppet applies an ensurable resource, it first checks the resource state by calling
the exists? method. This method returns true to indicate that a resource already exists
and false otherwise. In the example above, the command rpm -q <package_name> is
executed by the exists? method to check if a package is installed. If the rpm command
returns a non-zero exit code, it will raise a Puppet::ExecutionFailure exception. The
exists? method explicitly catches this exception and returns false to indicate that the
package is not installed.

Puppet compares the result of the exists? method with the declared value of the ensure
property to determine the next method(s) to invoke.

Creating/Destroying Resources

The create and destroy methods modify a resource’s existence state according to the
user’s declaration. create will only be invoked when the ensure state of a resource has
been set as present, and the exists? method returns false (indicating that the resource
does not exist). The destroy method will only be invoked when the ensure state of a
resource has been set as absent, and the exists? method returns true (indicating that
the resource exists).

Table 3-1 shows how Puppet compares the results from the exists? method to the value
of the ensure property to determine what action the provider takes:

Table 3-1. Comparisons based on exists? method results
exists? method result ensure value Action ensure state transition

true present manage other properties n/a

true absent destroy method present → absent

false present create method absent → present

false absent do nothing n/a

Properties and Providers | 45

www.it-ebooks.info

http://www.it-ebooks.info/

As indicated in Table 3-1, properties other than ensure are only indi‐
vidually managed when ensure is set to present and the resource al‐
ready exists. When a resource state is absent, Puppet ignores any speci‐
fied resource property.

Resources should have all of their properties configured correctly upon creation. Puppet
assumes resources will be created with the correct properties. The methods managing
individual properties of a resource are not invoked when create is called. When the
create method is implemented incorrectly, it results in two Puppet runs for resources
to reach their desired state; one to first create the resource, then again to sync the resource
properties. This is why the create method for the yum provider below appends the
specified version to the package name before performing the installation:

Puppet::Type.type(:custom_package).provide(:yum) do
 confine :osfamily => :redhat

 commands :yum => '/usr/bin/yum',
 :rpm => '/bin/rpm'

 def exists?
 begin
 rpm('-q', resource[:name])
 true
 rescue Puppet::ExecutionFailure => e
 false
 end
 end

 def create
 package= resource[:version] ? "#{resource[:name]}-#{resource[:version]}" :
resource[:name]
 yum('install', '-y', package)
 end

 def destroy
 yum('erase', '-y', resource[:name])
 end

end

After implementing supporting methods for an ensurable resource, it is important to
verify the resource is working correctly with puppet resource. Be sure to comment out
the version property from the type we developed in the last section because we have not
implemented its corresponding provider methods yet.

Now you can use puppet resource to create a custom_package resource:

$ puppet resource custom_package httpd ensure=present --debug
debug: Puppet::Type::Custom_package::ProviderYum: Executing '/bin/rpm -q httpd'

46 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

debug: Puppet::Type::Custom_package::ProviderYum:
 Executing '/usr/bin/yum install httpd'
notice: /Custom_package[httpd]/ensure changed 'absent' to 'present'
debug: Finishing transaction -607733468
debug: Storing state
debug: Stored state in 0.04 seconds
custom_package { 'httpd':
 ensure => 'present',
}

You can also use Puppet to destroy the same package:

$ puppet resource custom_package httpd ensure=absent --debug

Now that we have implemented the ensure property for our custom_package type, let’s
move on to implementing the version property methods. If the package already exists
on the system and ensure is set to present, Puppet will obtain the package version via
the version method. It compares the current version to the user-declared value to decide
if the version= method should also be called. The following section will cover how to
implement those two methods.

Managing Properties
Puppet does much more than just manage the existence of resources. The provider
should implement two methods which get and set values for each property. When a
declared resource already exists, Puppet invokes these methods to manage individual
properties. First, Puppet calls the getter method to retrieve the current value, then Pup‐
pet compares the result against the user-declared value and conditionally invokes a setter
method to update the value.

Our package resource supports a property called version that was added to the type
with the following code:

Puppet::Type.newtype(:custom_package) do
 ...
 newproperty(:version) do
 end
end

The method retrieving the version value matches the property name, where the method
setting the value is appended with =(value):

…
 def version
 # implement the command to obtain package version.
 end

Properties and Providers | 47

www.it-ebooks.info

http://www.it-ebooks.info/

 def version=(value)
 # implement the command to install a specific package version
 end
...

You can now implement getters and setters for your yum provider to set a package to an
exact version:

Puppet::Type.type(:custom_package).provide('yum') do

 commands :yum => '/usr/bin/yum',
 :rpm => '/bin/rpm'

 def version
 version = rpm('-q', resource[:name])
 if version =~ /^#{Regexp.escape(resource[:name])}-(.*)/
 $1
 end
 end

 def version=(value)
 yum('install', "#{resource[:name]}-#{resource[:version]}")
 end
...
end

The version=(value) method is a naive implementation that does not
handle downgrade properly. The correct implementation should com‐
pare against the installed software version and invoke package down‐
grade when appropriate. The code here is kept simple; for more
complete examples, see the ~/src/puppet/lib/puppet/provider/packages
directory.

When all the resource properties have the appropriate provider methods implemented,
you can execute puppet resource to manage the resource:

$ puppet resource custom_package mysql
custom_package { 'mysql':
 ensure => present,
 version => '5.0.95-1.el5_7.1',
}

At this point, you have a fully functional puppet resource. However, the implementation
isn’t finished because the command puppet resource custom_package doesn’t show
a list of packages. The next section will discuss how to implement the ability to query
for all resource instances for a given provider.

48 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering and Prefetching Resources
So far, we have only discussed how providers manage resources by configuring the
system state to match their declared state. Puppet supports an additional mode of op‐
eration: the discovery of resources. This retrieves the current state of all resources of a
given type on a system.

This section introduces the self.instances method and demonstrates how it enables
providers to discover resource instances of a specific type on the current system. We
will also discuss self.prefetch, which is used to cache the state of all managed re‐
sources of a given type in the catalog.

It is important to understand Puppet command line invocations that operate by dis‐
covering versus managing resources, because this determines whether Puppet invokes
self.instances or self.prefetch. Table 3-2 shows which of these methods is invoked
for commonly used Puppet actions.

Table 3-2. Comparing discovery vs. prefetching actions
Command Provider method Mode

puppet apply self.prefetch management

puppet agent self.prefetch management

puppet resource <type> self.instances discovery

puppet resource <type> <title> self.instances discovery

puppet resource <type> <title> <attr1=value1> self.prefetch management

This section will discuss how to implement self.instances for your providers to sup‐
port querying for resources with puppet resource. We will also discuss how self.pre
fetch and self.instances work in conjunction to improve the provider’s performance
when applying a catalog.

Discovery with self.instances
The self.instances method returns all instances of a resource type that its provider
finds on the current system. Implementing this method allows the puppet resource
command to query the system for instances of that type and return a list of resources in
the command line.

Provider methods whose name are prefixed with “self ” are invoked
when the type is being initialized and not when individual resources are
managed. These methods are called once per provider, as opposed to
the other provider methods we have seen so far, which are called for
each resource being managed.

Discovering and Prefetching Resources | 49

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-1 illustrates which methods are called per provider versus per resource for our
custom_package’s providers.

Figure 3-1. custom_package type with yum and gem providers

The example below shows how to use rpm -qa to query for a list of all packages that our
providers can discover on a Redhat system:

def self.instances
 packages = rpm('-qa','--qf','%{NAME} %{VERSION}-%{RELEASE}\n')
 packages.split("\n").collect do |line|
 name, version = line.split(' ', 2)
 new(:name => name,
 :ensure => :present,
 :version => version
)
 end
end

The self.instances method returns an array of the discovered resources. In the ex‐
ample above, these resources are created by calling the method new for each package
and passing its properties as a hash. ensure is set explicitly to :present in this hash
because all resources discovered by rpm -qa are assumed to exist on the current system.
All attributes set in this hash are assigned to the resource’s property hash, which will be
covered in the next section.

50 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

The Property Hash
Each resource returned by the self.instances method stores its discovered attributes
in an instance variable called @property_hash. This hash keys are the cached properties
that were explicitly passed to the new method. In our yum provider example,
the :name, :ensure, and :version attributes can all be referenced out of the @proper
ty_hash using a symbol as the index (i.e., @property_hash[:version]).

Any provider method can access values from the property hash. The example below
demonstrates how to simplify the exists? and version methods for our provider with
the values cached in the @property_hash:

...
def self.instances
 packages = rpm('-qa','--qf','%{NAME} %{VERSION}-%{RELEASE}\n')
 packages.split("\n").collect do |line|
 name, version = line.split(' ', 2)
 # initializes @property_hash
 new(:name => name,
 :ensure => :present,
 :version => version
)
 end
end
...
def exists?
 @property_hash[:ensure] == :present
end

def version
 @property_hash[:version]
end
...

The source code above will only work for puppet resource query com‐
mands. The @property_hash will not be initialized correctly for other
commands until we implement self.prefetch, which will be covered
in a later section.

The self.instances method should only cache the values of properties if they are
discovered as part of the process for finding existing resources. If the property value was
not collected by self.instances, Puppet will still invoke the property’s getter methods
to obtain their value.

Resource properties that require additional commands should be implemented in their
respective getter method. For example, the show databases command returns a list of
databases on a mysql server, but the results do not contain individual properties, such

Discovering and Prefetching Resources | 51

www.it-ebooks.info

http://www.it-ebooks.info/

as character encoding. The retrieval of character encoding should be performed in the
property’s getter method, because this method will only be called for databases Puppet
manages. This avoids the unnecessary request for encoding information on unmanaged
databases.

Query All Resources
Now that we’ve implemented self.instances and modified our getter methods (ver
sion and exists?) to use the @property_hash, we can finally query for all instances of
yum custom_packages with puppet resource:

$ puppet resource custom_package
custom_package { 'acl':
 ensure => 'present',
 version => '2.2.39-8.el5',
}
custom_package { 'acpid':
 ensure => 'present',
 version => '1.0.4-12.el5',
}
custom_package { 'alsa-lib':
 ensure => 'present',
 version => '1.0.17-1.el5',
}
custom_package { 'amtu':
 ensure => 'present',
 version => '1.0.6-2.el5',
}
...

Puppet queries for resource instances across all suitable providers. The
example in this section assumes there is only one suitable provider for
our custom_package type. Puppet will fail to query resources if any of
the suitable providers have not implemented self.instances. For this
reason, many providers in Puppet’s source code simply return [] from
self.instances.

def self.instances
 []
end

Adding the --debug flag to the command above shows that the previous example re‐
trieves the state of all packages on the system with a single system call, rpm -qa:

$ puppet resource custom_package --debug
debug: Puppet::Type::Custom_package::ProviderYum:
 Executing '/bin/rpm -qa --qf %{NAME} %{VERSION}-%{RELEASE}\n'

52 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

custom_package { 'acl':
 ensure => 'present',
 version => '2.2.39-8.el5',
}

This also allows you to query for the current state of a specific custom_package resource:

$ puppet resource custom_package acl
custom_package { 'acl':
 ensure => 'present',
 version => '2.2.39-8.el5',
}

Once self.instances has been implemented, you can use it directly from irb to query
for all instances of a resource type. The example below demonstrates how you can use
self.instances to query for a list of all Puppet Enterprise packages that are installed
using Puppet’s built-in package type:

>> require 'puppet'
>> require 'pp'
get all packages from the system
>> packages = Puppet::Type.type(:package).instances
filter for packages whose name starts with pe
>> pe_packages = packages.select{|resource| resource.name =~ /^pe/ }
transform the list of resources into hashes
>> pe_packages.collect {|p| { p.to_hash }

Now that you have seen how self.instances retrieves the current state of all yum
custom_package resources using a single command, we can discuss how the same prin‐
ciple can be used to optimize our providers by prefetching the state of all managed
resources with a single system call.

Prefetching Managed Resources
When managing resources, the self.prefetch method is invoked the first time that
Puppet encounters a given resource type. It provides a hook for programming logic that
is always performed before any resources of that type are applied. This is typically used
to cache or “prefetch” the state of all resource instances that a given provider can discover.

Providers that are capable of performing a single inexpensive lookup to retrieve the state
of all resources on the system should implement this method. In Puppet, the file type’s
providers do not implement self.instances or self.prefetch because the operations
required to list all files on a system are prohibitively expensive. Imagine how slow man‐
agement of files would be if you had to query for the state of all files on the system just
to set the mode of a single file!

The prefetch method accepts an argument that is a hash of all managed resources of
the provider’s type. It is commonly used in conjunction with self.instances to pop‐
ulate the property hash for those resources.

Discovering and Prefetching Resources | 53

www.it-ebooks.info

http://www.it-ebooks.info/

The example below shows self.prefetch setting the provider (which contains the
property hash) for all managed resources by invoking self.instances (i.e., instances):

def self.prefetch(resources)
 packages = instances
 resources.keys.each do |name|
 if provider = packages.find{ |pkg| pkg.name == name }
 resources[name].provider = provider
 end
 end
end

The code above does the following:

1. Discovers all custom_package resources on the system by invoking
self.instances.

2. Iterates through all custom_package resources in the catalog.
3. If the managed package exists in the self.instances cache, assigns its provider to

set its property hash.

The example below shows how to implement our yum provider with self.instances
and prefetching. This allows the state of all resources and properties to be queried by
this provider with a single system call to rpm -qa:

Puppet::Type.type(:custom_package).provide('yum') do
 ...
 def self.instances
 packages = rpm('-qa','--qf','%{NAME} %{VERSION}-%{RELEASE}\n')
 packages.split("\n").collect do |line|
 name, version = line.split
 new(:name => name,
 :ensure => :present,
 :version => version,
)
 end
 end

 def self.prefetch(resources)
 packages = instances
 resources.keys.each do |name|
 if provider = packages.find{ |pkg| pkg.name == name }
 resources[name].provider = provider
 end
 end
 end

 def exists?
 @property_hash[:ensure] == :present
 end

54 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

 def version
 @property_hash[:version]
 end
 ...
end

Query actions will fail if self.instances is not defined for a provider
while manage actions will only invoke self.prefetch when it is de‐
fined. If self.instance is implemented but the self.prefetch method
is omitted, the commands puppet agent, puppet apply will not pop‐
ulate each resource’s @property_hash. An empty @property_hash in
the example code above returns incorrect values for the exists? and
version methods, resulting in incorrectly retrieved resource states.

We recommend using self.prefetch to populate the property hash when it is possible
to discover all your resources with a single command. When collecting resources re‐
quires multiple commands, implementing self.prefetch may detract from instead of
increase performance. For example, if each service status requires a separate system call
(service <service_name> status), then prefetching should not be enabled for services. In
short: Puppet should not indiscriminately query every service’s status on the system just
to manage a subset of the possible services.

Resource attribute values should be prefetched into the @property_hash when appro‐
priate. This simplifies property methods for the provider and Puppet provides a shortcut
to autogenerate them, called mk_resource_methods.

Generated Property Methods
When you implement self.instances and self.prefetch, all attribute getters retrieve
their values from the property hash if they were cached. This results in an excessive
amount of repetitive provider code for resource types with a large number of properties.
Puppet provides the convenience method mk_resource_methods that dynamically gen‐
erates getter methods for each resource property by retrieving their values from the
property hash.

The example below comments out the code that is generated by mk_resource_methods:

mk_resource_methods

generates the following methods via Ruby metaprogramming
def version
@property_hash[:version] || :absent
end

Discovering and Prefetching Resources | 55

www.it-ebooks.info

http://www.it-ebooks.info/

You can explicitly override the methods created by mk_resource_methods by imple‐
menting a method of the same name. This allows you to take advantage of autogener‐
ating attribute methods via mk_resource_methods, while still retaining the flexibility to
implement custom property methods that do not conform to this simple pattern.

Managing a Resource
The puppet resource command is able to manage resources as long as their setter
methods (create, destroy, and version=) are implemented for our custom_package’s
yum provider:

...
def create
 if resource[:version]
 yum('install', '-y', "#{resource[:name]}-#{resource[:version]}")
 else
 yum('install', '-y', resoure[:name])
 end
end

def destroy
 yum('erase', resource[:name])
end
…
def version=(value)
 yum('install', "#{resource[:name]}-#{resource[:version]}")
end
...

The command below demonstrates how you can use puppet resource to manage the
ensure state of your custom_package:

$ puppet resource custom_package httpd ensure=present
notice: /Custom_package[httpd]/ensure: created
custom_package { 'httpd':
 ensure => 'absent',
}

The output above indicates an event resulting in the creation of the httpd package, but
the returned resource hash indicates the httpd custom_package is absent. This is be‐
cause Puppet determines the state of this resource based on the value returned by the
exists? method which relies on the value cached in the property hash. This means that
any methods that modify the resource’s state need to update the @property_hash to
reflect those changes. This ensures that the puppet resource command shows the cor‐
rect value when Puppet modifies the system state.

The example below demonstrates how to update your setter methods to keep the prop‐
erty hash up-to-date with the system changes they make:

56 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

...
def create
 if resource[:version]
 yum('install', '-y', "#{resource[:name]}-#{resource[:version]}")
 else
 yum('install', '-y', resoure[:name])
 end
 @property_hash[:ensure] = :present
end

def destroy
 yum('erase', resource[:name])
 @property_hash.clear
end
...
def version=(value)
 yum('install', "#{resource[:name]}-#{resource[:version]}")
 @property_hash[:version] = value
end
...

Once these methods have been refactored, the output of puppet resource will indicate
the current state of resources that are modified:

$ puppet resource custom_package httpd ensure=present
notice: /Custom_package[httpd]/ensure: created
custom_package { 'httpd':
 ensure => 'present',
}

The previous example only updates the property hash after the yum
command has executed successfully. If you update the property hash
before that command, a command failure would result in a property
hash that is not consistent with the current system state.

Flush
The flush method provides a hook for logic that should be executed after all properties
of a resources have been applied. This is typically used to improve performance by
synchronizing multiple properties with a single call. If defined, the flush method is
always invoked once per resource when any property changes. It relies on the data sup‐
plied by a resource’s setter methods to determine what properties it needs to synchronize.

Previously, we demonstrated how to implement setter methods to update the state of
individual properties. For providers with a large number of properties, this can lead to
large numbers of interactions with the underlying system.

Discovering and Prefetching Resources | 57

www.it-ebooks.info

http://www.it-ebooks.info/

For example, a custom_user resource could implement multiple properties using the
usermod command in the setter method of each of those properties:

...
def uid=(value)
 usermod('-u', value, resource[:name])
end

def gid=(value)
 usermod('-g', value, resource[:name])
end

def shell=(value)
 usermod('-s', value, resource[:name])
end

With the provider implementation above, it could take upwards of three separate system
calls to synchronize a custom_user. Rather than invoking the usermod command for
every property change, you can simply update the system once with the flush method
to improve performance.

The example above can be reimplemented to use flush as follows:

...
def initialize(value={})
 super(value)
 @property_flush = {}
end

def uid=(value)
 @property_flush[:uid] = value
end

def gid=(value)
 @property_flush[:gid] = value
end

def shell=(value)
 @property_flush[:shell] = value
end

def flush
 options = []
 if @property_flush
 (options << '-u' << resource[:uid]) if @property_flush[:uid]
 (options << '-g' << resource[:gid]) if @property_flush[:gid]
 (options << '-s' << resource[:shell]) if @property_flush[:shell]
 unless options.empty?
 usermod(options, resource[:name]) unless options.empty?

58 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

 end
 end
 @property_hash = resource.to_hash
end

Notice that the above example initializes an instance variable @property_flush. The
desired value of all properties that need to be updated are stored in this hash. The flush
method synchronizes the state of all of these properties using a single call to usermod
with the updated values of the property hash. Also note that flush ensures that the
@property_hash in our example is always set to be the same as the declared resource.

Unlike property-specific methods that are invoked conditionally based on resource
state, the flush method will always be invoked at the end whether Puppet is creating,
destroying, or modifying the resource. Our example above needs to add extra condi‐
tional logic to ensure that useradd is only called if create or destroy was not invoked
(if either of these methods is invoked, then options will be empty).

When using the flush method, logged events do not necessarily indi‐
cate that something has changed, they merely indicate that changes have
been queued up in our property_flush hash. When Puppet’s execution
is interrupted, events may be reported that were not committed by the
flush method.

By default, Puppet synchronizes properties in the order they are declared in the resource
type. For complex resources where the property updates need to follow a specific se‐
quence, the flush method can also be used to issue several commands in the precise
order required to update the resource properly.

Purging Resources
Implementing the self.instances method automatically enables purging for ensurable
types. Purging ensures that only resources explicitly declared in Puppet’s catalog are
allowed to exist on a system; all other resources will be removed from the system.

You can enable purging for a resource type using the resources resource (yes, that really
is the name of it):

resources { 'custom_package':
 purge => true,
}

Purging is not very common for packages because of the large number of packages on
a system. It is extremely useful, however, for other resources such as hosts:

Discovering and Prefetching Resources | 59

www.it-ebooks.info

http://www.it-ebooks.info/

host { 'localhost':
 ensure => present,
 ip => '127.0.0.1',
}
resources { 'host':
 purge => true,
}

The above example purges all resources out of /etc/hosts except a single localhost entry.

Implementing self.instances allows you to query for all instances of a resource, im‐
proves the performance of managing resources by drastically reducing the amount of
system calls made, and enables purging. For these reasons, we recommend that you
implement caching for resource providers that are capable of querying for all resource
instances on a system.

Putting It All Together
Now that we have covered all of the details for how Puppet manages resource properties,
we can walk through the process of how Puppet applies a catalog:

1. Converts the catalog into an ordered list of resources to apply.
2. Verifies that these declared resources conform to the type interface by calling the

validate and munge methods of the type.
3. Invokes the prefetch method to cache values in the property hash if it was defined

for the provider.
4. For each of those resources that is ensurable, Puppet first invokes the exists meth‐

od to determine if that resource exists.
5. Compares the results of this method to the desired resource state.
6. Invokes create or destroy if the ensure state was not already in sync.
7. If the resource already existed, Puppet retrieves a list of its properties that were

declared and iterates through them. For each property, it calls the default getter
method and compares the value to the declared value. It finally calls the setter
method if the values were not equal.

8. Invokes flush for each resource if the method is defined.

Conclusion
This chapter covered how to use Puppet’s provider APIs to add multiple providers to
our custom_package example. You should now be able to write fully functional and
optimized providers that can manage and query puppet resources. The next chapter
covers advanced capabilities that can be implemented in types and providers.

60 | Chapter 3: Providers

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Advanced Types and Providers

The previous chapters covered the core concepts required to write fully functional types
and providers. In this chapter, we will explore several advanced features and their im‐
plementation. These topics are not required for all custom types, but they have been
included to ensure users have a more complete understanding of how Puppet works.
Many of Puppet’s native types provide the following functionalities and this chapter will
cover how to implement them:

• Resources can respond to refresh events triggered by the notify/subscribe meta‐
parameters.

• Providers may indicate they only support a subset of the functionality of a type
interface.

• Types can customize the output of event messages.

The chapter also discusses how code can be shared between multiple providers using
both provider inheritance as well as common shared libraries. Code reuse can simplify
providers, and reduce the total amount of code that needs to be written and maintained,
especially when you need multiple related providers for the same service.

After reading this chapter, you should be able to understand and implement:

• Supporting refresh signals initiated from the subscribe/notify metaparameter
• How providers can support a subset of a type’s features
• Code reuse through parent providers and shared libraries
• Modifying event log messages

61

www.it-ebooks.info

http://www.it-ebooks.info/

Refresh
In Puppet, when any properties are updated, an event is recorded which can trigger
updates to other resources with a refresh signal. These special relationships are defined
with the notify and subscribe metaparameters. This adds a refresh dependency be‐
tween resources in addition to a regular order dependency (notify implies before, and
subscribe implies require). This section will discuss how to implement the refresh
method so a resource can respond to a refresh signal.

The most common usage of refresh relationships in Puppet is to trigger service restarts.
When updating application settings, configuration file changes often require service
restarts. The following demonstrates how an sshd custom_service can subscribe to
changes in its configuration file:

file { '/etc/sshd.conf':
 content => template('ssh/sshd.conf.erb'),
}
custom_service { 'sshd':
 ensure => running,
 subscribe => File['/etc/sshd.conf'],
}

The sshd custom service in this example receives a refresh signal for any changes to
the /etc/sshd.conf file. Its type needs to implement the refresh method to respond to
these signals, or any refresh signal will simply be ignored. In this case, notify or sub
scribe simply indicate an ordering relationship and the refresh signal is ignored.

The example below implements the refresh method for the custom_service type. This
method instructs the type to call the current provider’s restart method when it receives
a refresh signal and the ensure state of the resource was specified as :running:

Puppet::Type.newtype(:custom_service) do
 ...
 def refresh
 if (@parameters[:ensure] == :running)
 provider.restart
 else
 debug "Skipping restart; service is not running"
 end
 end
end

We also need to implement the provider’s restart method invoked by the type’s refresh
method:

Puppet::Type.type(:custom_service).provide('service') do

 commands :service => 'service'
 ...
 def restart

62 | Chapter 4: Advanced Types and Providers

www.it-ebooks.info

http://www.it-ebooks.info/

 service(resource[:name], 'restart')
 end
 ...
end

Now, custom_service resources will be restarted when they receive refresh signals. The
next section will discuss how to create providers that only support a subset of the func‐
tionality of its type using the features method.

Features
A single resource type can have multiple provider backends. In some cases, a provider
may not support all functionalities described in the resource type. The features method
allows the type to specify properties that will only be implemented by a subset of its
providers. The providers can ignore feature specific properties unless they offer man‐
agement for those functionalities and declare support for them. Unlike properties, pa‐
rameters do not need to label feature support, since providers that do not support a
parameter can simply ignore them.

For example, a database resource may have both MySQL and PostgreSQL backends.
MySQL tables have the option of selecting a storage engine such as MyISAM, InnoDB,
and memory (among several other choices). PostgreSQL does not offer this option since
it only offers the built-in storage engine. In this case, the storage engine attribute should
be labeled as a feature since it is only supported by one of the products. A single resource
type can have multiple provider backends. In some cases, a provider does not support
all functionalities described in the resource type. For example, a database resource may
have both MySQL and PostgreSQL backend. In this case, the storage engine attribute
should be labeled as a feature since it is only supported by one of the products. The
features method allows the type to specify properties that require a unique function‐
ality. The providers can ignore feature specific properties unless they support manage‐
ment for those functionalities and declare support for them. Unlike properties,
parameters do not need to label feature support, since providers that do not support a
parameter can simply ignore them.

A type declares the list of optional functionalities using the feature method with the
following three arguments:

1. The name of the feature
2. Documentation for the feature
3. A list of methods a provider should implement to support a feature

The syntax for creating a feature is shown below:

feature :feature_name, "documentation on feature.",
 :methods => [:additional_method]

Features | 63

www.it-ebooks.info

http://www.it-ebooks.info/

In our custom_package type from the last chapter, we implemented a property called
version. This property is only supported by the subset of providers that have a notion
of package versions. The following example demonstrates how a feature, :versiona
ble, can be added to our custom_package type, and how our version property can
indicate that it is only supported by providers that are versionable:

Puppet::Type.newtype(:custom_package) do
 ...
 feature :versionable, "Package manager interrogate and return software
 version."

 newproperty(:version, :required_features => :versionable) do
 ...
 end
end

Note that we did not specify a list of methods that are implemented by a provider to
indicate that it supports this feature. When no methods are listed, a provider must
explicitly declare its support for its feature with the has_feature method:

Puppet::Type.type(:custom_package).provide('yum') do
 has_feature :versionable
end

For custom_package providers that do not support versions, simply omit has_fea
ture :versionable, and the property can be safely ignored. When Puppet encounters
providers that do not support a specific feature or providers that are missing the required
methods for a feature, it skips properties that depend on those features.

Code Reuse
There are a few ways in which common code can be shared between providers. Sharing
code between providers is extremely useful because it reduces duplicate code across all
providers. This section will discuss how providers can reuse code from parent providers
and shared utility libraries.

Parent Providers
It is possible for multiple providers to use the same commands to perform a subset of
their functionality. Providers are allowed a single parent provider. Providers reuse their
parent’s methods by default, and can optionally implement methods to override the
parent’s behavior.

A provider sets its parent by passing the :parent option to the provide method. The
following trivial example shows how a Puppet Enterprise gem provider could reuse all
of the existing functionality of the current gem provider and just update the path of the
gem executable:

64 | Chapter 4: Advanced Types and Providers

www.it-ebooks.info

http://www.it-ebooks.info/

Puppet::Type.type(:package).provide :pe_gem, :parent => :gem do

 commands :gemcmd => "/opt/puppet/bin/gem"
end

The yum and rpm providers that we crafted in the last chapter can use provider inheritance
to share most of their functionality. Since the yum provider relies on rpm for retrieving
the current state of packages on the system, it can use inheritance to avoid having to
reimplement these methods. The following example is the rpm provider which will be
the parent provider for yum:

Puppet::Type.type(:custom_package).provide(:rpm) do
 commands :rpm => 'rpm'
 mkresource_method

 self.prefetch
 packages = rpm('-qa','--qf','%{NAME} %{VERSION}-%{RELEASE}\n')
 packages.split("\n").collect do |line|
 name, version = line.split
 new(:name => name,
 :ensure => :present,
 :version => version,
)
 end
 end

 self.instances
 packages = instances
 resources.keys.each do |name|
 if provider = packages.find{ |pkg| pkg.name == name }
 resources[name].provider = provider
 end
 end
 end

 def exists?
 @property_hash[:ensure] == :present
 end

 def create
 fail "RPM packages require source parameter" unless resource[:source]
 rpm('-iU', resource[:source])
 @property_hash[:ensure] = :present
 end

 def destroy
 rpm('-e', resource[:name])
 @property_hash[:ensure] = :absent
 end
end

Code Reuse | 65

www.it-ebooks.info

http://www.it-ebooks.info/

The provider above already implements several of the exact methods that our yum
provider needs, namely: self.instances, self.prefetch, and exists?. The example
below demonstrates how our yum provider can set its parent to the rpm provider and
override that provider’s create and destroy methods:

Puppet::Type.type(:custom_package).provide(:yum, :parent => :rpm) do
 commands :yum => 'yum'
 commands :rpm => 'rpm'

 def create
 if resource[:version]
 yum('install', '-y', "#{resource[:name]}-#{resource[:version]}")
 else
 yum('install', '-y', resoure[:name])
 end
 @property_hash[:ensure] = :present
 end

 def destroy
 yum('erase', resource[:name])
 @property_hash[:ensure] = :absent
 end
end

A child provider does not currently share commands with its parent
provider. Commands specified in the parent need to be specified again
in the child using the commands methods.

Ruby extensions can share common code without using parent providers. Types and
Providers occasionally need to share common libraries. The next section will discuss
the conventions and challenges with sharing common code in custom Ruby extensions.

Shared Libraries
Puppet Labs recommends that utility code located in modules be stored in the following
namespace: lib/puppet_x/<organization>/. Utility code should never be stored in lib/
puppet because this may lead to unintended conflicts with puppet’s source code, or with
the source code from other providers.

The following directory tree contains an example module with two types, each of which
has one provider. It also contains a class with some helper methods.

`-- lib
 |-- puppet
 | |-- provider
 | | `-- one
 | | `-- default.rb

66 | Chapter 4: Advanced Types and Providers

www.it-ebooks.info

http://www.it-ebooks.info/

 | | `-- two
 | | `-- default.rb
 | `-- type
 | |-- one.rb
 | `-- two.rb
 `-- puppet_x
 `-- bodeco
 `-- helper.rb

For more information on this convention, see its Puppet Labs project
issue, #14149.

Let’s create a helper method shared among both providers:

class Puppet::Puppet_X::Bodeco::Helper
 def self.make_my_life_easier
 ...
 end
end

All code in a module’s lib directory is pluginsynced to agents along with types and pro‐
viders. This does not, however, mean that all Ruby code in a module’s lib directory will
automatically be available in Ruby’s LOADPATH.

Due to limitations around how Puppet currently handles Ruby libraries, code should
only be shared within the same module, and then it should only be used by requiring
the relative path to the file. The provider should require the library as follows:

require File.expandpath(File.join(File.dirname(__FILE__), '..', '..', , '..',
'puppet_x', 'bodeco', 'helper.rb'))
Puppet::Type.type(:one).provide(:default) do

 def exists?
 Puppet::Puppet_X::Helper.make_my_life_easier
 end

end

The require method above should be explained in a little more detail:

1. FILE provides the full path of the current file being processed.
2. File.dirname is invoked in the full path of this file to return its directory name.
3. File.join is used to append the relative path ../../../puppet_x/bodeco to our current

directory path.
4. File.expand_path is used to convert the relative path into an absolute path.

Code Reuse | 67

www.it-ebooks.info

http://projects.puppetlabs.com/issues/14149
http://projects.puppetlabs.com/issues/14149
http://www.it-ebooks.info/

The result of these methods is a relative path lookup for the helper utility in our current
module. This relative path lookup is not recommended across modules, since modules
can exist in different module directories that are both part of the current modulepath.

Customizing Event Output
Whenever Puppet modifies a resource, an event is recorded. The event message can be
customized per resource attribute by overriding the should_to_s, is_to_s, and
change_to_s methods.

When executing Puppet, if the current state of the resource does not match the resource
specified desired state, Puppet will display the following log message:

notice: /#{resource_type}[#{resource_title}]/#{resource_attribute}:
 current_value 'existing_value', should be 'desired_value' (noop)

The output displayed for the current value is determined by calling is_to_s on the
retrieved value of the resource. The value for the desired value is determined by calling
should_to_s on the munged property value.

By default, Puppet simply transforms the attribute value to a string with Ruby’s built-in
method to_s. For hash values, this results in an incomprehensible string output. The
following irb snippet shows what happens when you call to_s on a hash:

>> {'hello'=>'world'}.to_s
=> "helloworld"

If the property returns this hash value, the Puppet notice message would be “should be
‘helloworld’”. We can use the should_to_s and is_to_s methods as follows to override
how hashes are displayed in Puppet’s output:

 newproperty(:my_hash) do
 def should_to_s(value)
 value.inspect
 end

 def is_to_s(value)
 value.inspect
 end
 end

Now when the resource changes, the message is much more readable:

notice: ... : current_value '{"hello"=>"world"}', should be
 '{"goodbye"=>"world"}'

Usually, updating these methods to .inspect will provide sufficiently readable output,
but in some cases where the attribute contains a long list of array values, it’s helpful to
display the differences rather than list all values. In these situations, the change_to_s
method provides the flexibility to format this output:

68 | Chapter 4: Advanced Types and Providers

www.it-ebooks.info

http://www.it-ebooks.info/

 newproperty(:my_array) do
 def change_to_s(current, desire)
 "removing #{(current-desire).inspect},
 adding #{(desire-current).inspect}."
 end
 end

For hashes, there’s rubygems hashdiff, which will show the differences between two
hashes:

require 'rubygems'
require 'hashdiff'

 newproperty(:my_array) do
 def change_to_s(current, desire)
 "removing #{(HashDiff.diff(current,desire).inspect},
 adding #{HashDiff.diff(desire, current).inspect}."
 end
 end

Now What?
This book covered the types and providers APIs used to implement custom resources.
With this knowledge, you should understand when and why—as well as how—to write
native resource types. We certainly have not explored every possible API call used by
Puppet’s native types. Some were ignored on purpose because they are fairly complex
and we do not advocate using them, while others were omitted because the value of
using them is not clear, even to us.

For the more adventurous readers, the Puppet source code contains examples of every
possible supported API call: lib/puppet/{type,provider,property}.rb. In fact, we often used
Puppet’s source code as a reference to ensure that concepts were correctly explained for
this book.

For new Puppet developers, the following resources are available for continued
assistance:

• The google puppet-dev mailing list
• The Freenode IRC channels #puppet and #puppet-dev

Now What? | 69

www.it-ebooks.info

http://groups.google.com/group/puppet-dev
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

Installing Puppet

The book assumes that users have installed Facter and Puppet from source in their ~/src
directory.

This section walks through the process of installing the following:

• Ruby
• Facter and Puppet

Installing Ruby
In general, Linux distributions provide Ruby 1.8.7, which can be installed as a system
package. Earlier versions of Ruby 1.8 should be avoided due to performance issues and
known bugs. Puppet 3.0 officially supports Ruby 1.9.x series—however, it is only avail‐
able on the latest distributions.

As of the publication date of this book, using Puppet 3.0 with Ruby 1.9.3
contains enough known issues that it should be avoided. This is likely
to be fixed in the near future.

The following commands are sufficient for installing ruby and rubygems on Redhat-
and Debian-based systems:

$ apt-get install ruby rubygems

$ yum install ruby rubygems

71

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Ruby from a package is sufficient if you only need to support
a single Ruby environment. RVM is recommended for more compli‐
cated setups and in general for development with Ruby. It allows mul‐
tiple versions of Ruby to be installed on the same system, and provides
the ability to isolate specific sets of gems to different environments using
gemsets. More information on RVM can be found here.

curl -L https://get.rvm.io | bash -s stable --ruby

rvm install 1.8.7
rvm install 1.9.3

Installing Facter and Puppet
PuppetLabs provides the following package repositories for the latest stable version of
Puppet and Facter, which automatically require the appropriate Ruby packages for their
respective platforms:

• http://apt.puppetlabs.com: Debian, Ubuntu, DEB
• http://yum.puppetlabs.com: RedHat, CentOS, Fedora RPM
• http://downloads.puppetlabs.com/mac: MacOS DMG
• http://downloads.puppetlabs.com/windows/: Windows MSI

Packages provide a fast and easy way to get Puppet up and running. Since this book
refers to examples from Puppet’s own source code, it makes more sense to install Puppet
from source. This requires cloning the source code from GitHub. The following example
demonstrates how to install Puppet and Facter from GitHub into ~/src:

$ mkdir ~/src
$ cd ~/src
$ git clone https://github.com/puppetlabs/facter.git
$ git clone https://github.com/puppetlabs/puppet.git

Now, we need to configure the RUBYLIB environment variable to ensure that Ruby can
find the Puppet and Facter source files. We also need to configure the PATH environ‐
ment variable to ensure that our system can use the Facter and Puppet commands:

$ export RUBYLIB=~/src/facter/lib:~/src/puppet/lib:$RUBYLIB
$ export PATH=~/src/facter/bin:~/src/puppet/bin:$PATH

The environment variables can be either saved in a user profile file
(like ~/.bashrc), or stored as an alias along with the Puppet/Facter
commands.

72 | Appendix A: Installing Puppet

www.it-ebooks.info

https://rvm.io/
http://apt.puppetlabs.com
http://yum.puppetlabs.com
http://downloads.puppetlabs.com/mac
http://downloads.puppetlabs.com/windows/
http://www.it-ebooks.info/

Now, we can use git to check out a specific revision of Facter or Puppet:

$ cd ~/src/facter
$ git checkout 1.6.10
$ facter --version
1.6.10
$ cd ~/src/puppet
$ git checkout 2.7.14
$ puppet --version
2.7.14

If you want to use the latest version of Facter and Puppet in development, check out the
*.x branch or master:

$ cd ~/src/facter
$ git checkout 2.x
$ cd ~/src/puppet
$ git checkout 3.0.x

Installing Facter and Puppet | 73

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B

Modules

Puppet modules are a collection of components for managing a specific service. Modules
allow the greater Puppet community to share and reuse code to deploy the same service
across a wide range of environments. Complex infrastructures are typically composed
of several smaller modules. Examples of modules can be found at puppetlabs.

Modules conform to a directory structure that organizes content as follows:

module_name
 |-- manifests
 |-- files
 |-- templates
 |-- tests
 |-- lib
 `-- spec

Each subfolder contains the following files:
manifests

Puppet classes and defined resource types are located in a manifest file (.pp exten‐
sion) in this directory.

lib
Ruby extensions (.rb extension) are located in this directory. This includes custom
facts, functions, types, and providers.

spec
Ruby Rspec test files are located in this directory. Rspec files are used to implement
unit tests for Ruby source code or Puppet manifests.

files
Files distributed to Puppet agents via source ⇒ puppet:///modules/module_name/
are located in this directory.

75

www.it-ebooks.info

http://forge.puppetlabs.com
http://www.it-ebooks.info/

templates
Ruby ERB (*.erb) templates are located in this directory. They are typically used by
the file resource’s content property, via content ⇒ template(module_name/
some_template.erb).

tests
Puppet .pp manifest files containing declaration of classes and resources.

Modules must conform to this directory structure so that Puppet knows how to access
and use the content from modules to extend itself. All Ruby extensions for Puppet should
be contained in a module’s lib directory.

Before we can start creating any user-defined Puppet content, we must first understand
how Puppet distributes custom content to puppet agents. When the Puppet package is
installed on the system, only built-in native types/providers are available. Unlike man‐
ifests, files in the lib directory are distributed to all the Puppet agents.

If Puppet encounters a type when applying a catalog that it cannot find,
it will simply skip that type.

When running Puppet in client/server mode, custom providers need to be downloaded
from the master to the agents by enabling the pluginsync option. When this option is
enabled, the latest version of all custom types and providers will be synchronized to the
agents ensuring that the latest version is always used.

Puppet does not currently support loading multiple versions of types
and providers from different environments. Types and providers should
always be pluginsynced from the production or default environment.
Do not expect multiple versions of types and providers to work with
Puppet environments (as of Puppet 3.0.0).

In order to determine the current modulepath, the following command provides a
colon-separated list of directories that comprise the modulepath:

$ puppet config print modulepath
/etc/puppet/modules:/usr/share/puppet/modules

When the puppet command is executed as a non-root user, the
modulepath will include the user’s home directory, which is suitable for
development. When deploying the module to a Puppet server, use the
root account’s modulepath.

76 | Appendix B: Modules

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C

Troubleshooting and Debugging

When developing Puppet types and providers, it’s not uncommon to run into bugs that
are hard to trace and debug. There are a few options in Puppet that will simplify the
troubleshooting process. The option --trace will provide the Ruby stacktrace when
Puppet execution fails. This will give you a file and line number to provide additional
insight into the problem at hand.

The Puppet.debug('message') method can be used in conjunction with the Puppet
--debug flag to output troubleshooting messages to the console. This is helpful to output
variables and ensure that certain methods are invoked as expected. But it’s often far more
helpful to dive directly into a debugger. The ruby-debug gem gives you the ability to
interactively troubleshoot by breaking at a specific line in the code:

require 'ruby-debug'; debugger

The post_mortem option allows ruby-debug to enter into an interactive session when
an exception occurs:

require 'ruby-debug';
Debugger.start(:post_mortem => true)

Let’s update our custom_package resource and add a breakpoint inside the type’s
exists? method:

def exists?
 require 'ruby-debug'; debugger
 ...
end

Now when we manage a custom_package, the debugger drops us into an interactive
session when the method exists? is invoked:

77

www.it-ebooks.info

http://www.it-ebooks.info/

$ puppet apply -e "custom_package { 'bash': ensure=>present }"
/etc/puppetlabs/puppet/modules/custom_packages/lib/puppet/provider/custom_pack
age/yum.rb:32
@property_hash[:ensure] == :present
(rdb:1)

In this interactive session we can:

• List the current source code:

(rdb:1) l
[27, 36] in /etc/puppetlabs/puppet/modules/custom_packages/lib/puppet/provid
er/custom_package/yum.rb
 27 end
 28 end
 29
 30 def exists?
 31 require 'ruby-debug'; debugger
=> 32 @property_hash[:ensure] == :present
 33 end
 34
 35 def version
 36 @property_hash[:version]

• Print any variable values:

(rdb:1) p @property_hash
{:version=>"3.2-32.el5", :ensure=>:present, :name=>"bash"}

• Next, execute the following line of code:

(rdb:1) n
/opt/puppet/lib/ruby/site_ruby/1.8/puppet/property/ensure.rb:74
if result
(rdb:1)
/opt/puppet/lib/ruby/site_ruby/1.8/puppet/property/ensure.rb:75
return :present
(rdb:1)

• Use irb to enter IRB session:

(rdb:1) irb
irb(ensure):001:0> p Puppet[:config]
"/etc/puppetlabs/puppet/puppet.conf"
=> nil
irb(ensure):002:0> exit

• Continue execution of code:

(rdb:1) c
notice: Finished catalog run in 18.05 seconds

78 | Appendix C: Troubleshooting and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

• Quit the debugger:

(rdb:1) q
Really quit? (y/n) y

This is a very shallow introduction to ruby-debug, but even with this short example the
power of the debugger is clearly demonstrated. The ability to interact with the code
when it’s executed is tremendously useful in order to understand and troubleshoot subtle
bugs. For more information on ruby-debug, see http://bashdb.sourceforge.net/ruby-
debug.html.

Troubleshooting and Debugging | 79

www.it-ebooks.info

http://bashdb.sourceforge.net/ruby-debug.html
http://bashdb.sourceforge.net/ruby-debug.html
http://www.it-ebooks.info/

About the Authors
Dan Bode has worked in the technology industry as a consultant and software developer
for the past decade. He has spent most of the last four years building infrastructure
automation solutions and teaching people how to use Puppet. He currently works in the
Business Development at PuppetLabs, where he spends his time researching technolo‐
gies and integrating them with Puppet.

Nan Liu is a Business Development Engineer at Puppet Labs and provides Puppet in‐
tegration solutions for third-party partners. Prior to BD, he was part of Puppet Labs’
professional service team, which travels globally to train users of Puppet and provide
implementation and architectural consulting for Puppet Labs customers worldwide.

Colophon
The animal on the cover of Puppet Types and Providers is a hispid hare (Caprolagus
hispidus).

The cover image is from Shaw’s Zoology. The cover font is Adobe ITC Garamond. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Built with Atlas. O’Reilly Media, Inc., 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Who Is This Book For?
	What Does This Book Cover?
	Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgement

	Chapter 1. Puppet Resources
	Resource Characteristics
	Declarative
	Idempotent
	Unique

	Resource Model
	Types
	Providers

	The puppet resource Command
	Retrieving Resources
	Modifying Resources
	Discover All Resources

	Noop Mode
	Catalogs
	Dependencies
	Catalog as a Graph

	Conclusion

	Chapter 2. Types
	Defining Puppet Types
	Attributes
	Namevars
	Properties
	The ensure Property
	Parameters

	Default Values
	Input Validation
	Validate
	newvalues

	munge
	AutoRequire
	Arrays
	Inline Documentation
	Conclusion

	Chapter 3. Providers
	Creating a Provider
	Suitability
	confine
	defaultfor
	commands

	Properties and Providers
	ensure Property
	Managing Properties

	Discovering and Prefetching Resources
	Discovery with self.instances
	The Property Hash
	Query All Resources
	Prefetching Managed Resources
	Generated Property Methods
	Managing a Resource
	Flush
	Purging Resources
	Putting It All Together

	Conclusion

	Chapter 4. Advanced Types and Providers
	Refresh
	Features
	Code Reuse
	Parent Providers
	Shared Libraries

	Customizing Event Output
	Now What?

	Appendix A. Installing Puppet
	Installing Ruby
	Installing Facter and Puppet

	Appendix B. Modules
	Appendix C. Troubleshooting and Debugging
	About the Authors

